留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向复杂大部件装配的多机器人制造系统运动规划研究进展

吴志鹏 赵安安 郑炜 田威 崔海华

吴志鹏, 赵安安, 郑炜, 田威, 崔海华. 面向复杂大部件装配的多机器人制造系统运动规划研究进展[J]. 机械科学与技术, 2021, 40(6): 969-978. doi: 10.13433/j.cnki.1003-8728.20200146
引用本文: 吴志鹏, 赵安安, 郑炜, 田威, 崔海华. 面向复杂大部件装配的多机器人制造系统运动规划研究进展[J]. 机械科学与技术, 2021, 40(6): 969-978. doi: 10.13433/j.cnki.1003-8728.20200146
WU Zhipeng, ZHAO Anan, ZHENG Wei, TIAN Wei, CUI Haihua. Research of Motion Planning of Multi-robot Manufacturing System for Assembly of Flexible Large Components[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 969-978. doi: 10.13433/j.cnki.1003-8728.20200146
Citation: WU Zhipeng, ZHAO Anan, ZHENG Wei, TIAN Wei, CUI Haihua. Research of Motion Planning of Multi-robot Manufacturing System for Assembly of Flexible Large Components[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 969-978. doi: 10.13433/j.cnki.1003-8728.20200146

面向复杂大部件装配的多机器人制造系统运动规划研究进展

doi: 10.13433/j.cnki.1003-8728.20200146
详细信息
    作者简介:

    吴志鹏(1974-), 博士研究生, 研究方向为飞机数字化装配, 能源与环保, wzp47@avic.com

    通讯作者:

    田威, 教授, 博士生导师, tw_nj@nuaa.edu.cn

  • 中图分类号: V262.4

Research of Motion Planning of Multi-robot Manufacturing System for Assembly of Flexible Large Components

  • 摘要: 移动机器人单元精确、稳定的运动规划是其自主完成既定任务的基础和前提,也是当前多机器人制造系统应用研究所需要解决的技术难题。通过对目前已有多机器人制造系统的研究综述,介绍了运动规划算法的研究现状及其趋势,分析了各种算法优劣势,为多机器人制造系统的工业应用提供理论基础。讨论了实现多机器人制造系统工业应用所需解决的问题,并对多机器人系统及其运动规划方法的研究重点及未来的发展方向进行了展望。
  • 图  1  Chen建立的KUKA iiwa移动机器人运动学模型[13]

    图  2  移动机器人装配车间组织原理图

    图  3  优先级资源分配模拟流程图

    图  4  移动机器人单元

    图  5  经典算法和智能算法在实际应用中的占比变化

    图  6  目标和障碍物的吸引力和排斥力

    表  1  冗余自由度机器人速度层运动控制方法总结

    方法 关节位置约束 关节速度约束 关节加速度约束 是否完成轨迹跟踪任务
    Flacco[16]
    Zhang[17]
    Faroni[18]
    Jia[19]
    Li[20]
    下载: 导出CSV

    表  2  规划算法分类

    经典规划算法 人工智能(自然启发)算法
    1.势场法(Potential field method)(1979) 1.神经网络算法(Neural network technique)(1943)
    2.单元分解法(Cell decomposition) 2.模糊逻辑算法(Fuzzy logic technique)(1965)
    3.栅格法(Gird method, GM)(1968) 3.遗传算法(Genetic algorithm technique)(1989)
    4.随机路图法(Probabilistic roadmap, PRM)(1996) 4.蚁群算法(Ant colony optimization technique)(1992)
    5.快速搜索随机树法(Rapidly exploring random tree, RRT)(1998) 5.粒子群算法(Particle swarm optimization)(2002)
    6.虚拟阻抗法(Virtual impedance method) 7.人工蜂群算法(Bee colony optimization technique)(2008)
    7.递归与分治法(Divide and conquer method) 9.灰狼优化算法(Grey wolf optimization)(2014)
    下载: 导出CSV

    表  3  势场法在移动机器人路径规划中的应用

    算法名称 作者 年份 障碍物形状 目标点状态 是否经过实物验证
    PFM Tan 2010 多种障碍物 静态目标点
    New PFM Ge 2002 点状 动态目标点
    Huang 2009 环状 静态目标点
    Huang 2012 环状 静态目标点
    Valbuena 2012 立方体 静态目标点
    Path-Guided APF-SR Chiang 2015 方形 动静态皆有
    GA-Fuzzy, GA-NN, PFM Hui 2009 环形 动态目标点
    下载: 导出CSV
  • [1] LJASENKO S, FERREIRA P, JUSTHAM L, et al. Decentralised vs partially centralised self-organisation model for mobile robots in large structure assembly[J]. Computers in Industry, 2019, 104: 141-154 doi: 10.1016/j.compind.2018.09.002
    [2] NOORMOHAMMADI-ASL A, TAGHIRAD H D. Multi-goal motion planning using traveling salesman problem in belief space[J]. Information Sciences, 2019, 471: 164-184 doi: 10.1016/j.ins.2018.08.062
    [3] WEI H X, SHAO Z Z, HUANG Z, et al. RT-ROS: a real-time ROS architecture on multi-core processors[J]. Future Generation Computer Systems, 2016, 56: 171-178 doi: 10.1016/j.future.2015.05.008
    [4] ZUREIKI A, DEVY M. SLAM and data fusion from visual landmarks and 3D planes[J]. IFAC Proceedings Volumes, 2008, 41(2): 14651-14656 doi: 10.3182/20080706-5-KR-1001.02481
    [5] POPPINGA J, BIRK A, PATHAK K, et al. Fast 6-DOF path planning for Autonomous Underwater Vehicles (AUV) based on 3D plane mapping[C]//Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. Kyoto, Japan: IEEE, 2011: 2374-3247
    [6] LV Z, YANG L Y, HE Y Q, et al. 3D environment modeling with height dimension reduction and path planning for UAV[C]//Proceedings of 2017 9th International Conference on Modelling, Identification and Control (ICMIC). Kunming China: IEEE, 2017: 734-739
    [7] BARBOSA J, LEITÃO P, ADAM E, et al. Dynamic self-organization in holonic multi-agent manufacturing systems: the ADACOR evolution[J]. Computers in Industry, 2015, 66: 99-111 doi: 10.1016/j.compind.2014.10.011
    [8] REMLEY D, REDIGER J, HAWORTH P, et al. Slug rivet machine installs 16 rivets per minute drill-rivet-shave[R]. SAE Technical Paper 2009-01-3155, 2009
    [9] CALAWA R, SMITH S, MOORE I, et al. Hawde five axis wing surface drilling machine[R]. SAE Technical Paper 2004-01-2806, 2004
    [10] 孟少华, 胡瑞钦, 张立建, 等. 一种基于机器人的航天器大型部件自主装配方法[J]. 机器人, 2018, 40(1): 81-88, 101 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201801010.htm

    MENG S H, HU R Q, ZHANG L J, et al. A method of autonomous assembly of large spacecraft components using robot[J]. Robot, 2018, 40(1): 81-88, 101 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201801010.htm
    [11] LJASENKO S, LOHSE N, JUSTHAM L. A comparison of the manufacturing resilience between fixed automation systems and mobile robots in large structure assembly[J]. Procedia CIRP, 2016, 57: 235-240 doi: 10.1016/j.procir.2016.11.041
    [12] 周菁. 自组织多机器人系统任务分配建模与设计[D]. 西安: 西北工业大学, 2015

    ZHOU J. The Modeling and design of self-organized multi-robot system on task allocation[D]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese)
    [13] CHEN F, SELVAGGIO M, CALDWELL D G. Dexterous grasping by manipulability selection for mobile manipulator with visual guidance[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1202-1210 doi: 10.1109/TII.2018.2879426
    [14] GRACIA L, SALA A, GARELLI F. Caldwell. Robot coordination using task-priority and sliding-mode techniques[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(1): 74-89 doi: 10.1016/j.rcim.2013.08.003
    [15] ANTONELLI G, CHIAVERINI S. Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(1): 109-120 doi: 10.1109/TFUZZ.2002.806321
    [16] FLACCO F, DE LUCA A, KHATIB O. Control of redundant robots under hard joint constraints: saturation in the null space[J]. IEEE Transactions on Robotics, 2015, 31(3): 637-654 doi: 10.1109/TRO.2015.2418582
    [17] ZHANG Y Y, LI S, ZHOU X F. Control of redundant robots under hard joint constraints: saturation in the null space[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3573-3582 doi: 10.1109/TIE.2018.2851960
    [18] FARONI M, BESCHI M, PEDROCCHI N, et al. Predictive inverse kinematics for redundant manipulators with task scaling and kinematic constraints[J]. IEEE Transactions on Robotics, 2019, 35(1): 278-285 doi: 10.1109/TRO.2018.2871439
    [19] JIA Y Y, XI N, CHENG Y, et al. Coordinated motion control of a nonholonomic mobile manipulator for accurate motion tracking[C]//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, USA: IEEE, 2014: 1635-1640
    [20] LI S, ZHANG Y N, JIN L. Kinematic control of redundant manipulators using neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2243-2254 doi: 10.1109/TNNLS.2016.2574363
    [21] 李高正, 黄小平, 师汉民, 等. 智能制造中多Agent系统的研究与应用[J]. 机械科学与技术, 2002, 21(2): 287-290, 294 doi: 10.3321/j.issn:1003-8728.2002.02.043

    LI G Z, HUANG X P, SHI H M, et al. Research on multi-agent system with application to intelligent manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2002, 21(2): 287-290, 294 (in Chinese) doi: 10.3321/j.issn:1003-8728.2002.02.043
    [22] LJASENKO S, LOHSE N, JUSTHAM L, et al. A self-organisation model for mobile robots in large structure assembly using multi-agent systems[M]//BORANGIU T, TRENTESAUX D, THOMAS A, et al. Service Orientation in Holonic and Multi-Agent: Proceedings of SOHOMA 2016. Cham: Springer, 2016: 83-91
    [23] LEITÃO P. Agent-based distributed manufacturing control: a state-of-the-art survey[J]. Engineering Applications of Artificial Intelligence, 2009, 22(7): 979-991 doi: 10.1016/j.engappai.2008.09.005
    [24] ADAMS G. Next generation mobile robotic drilling and fastening systems[R]. SAE Technical Paper 2014-01-2259, 2014
    [25] EVERHART T. Neighboring mobile robot cell with drilling and fastening[R]. SAE Technical Paper 2017-01-2094, 2017
    [26] JEFFERSON T G, CROSSLEY R, SMITH A, et al. Design of a reconfigurable assembly cell for multiple aerostructures[R]. SAE Technical Paper 2016-01-2105, 2016
    [27] Dillhoefer T. Power race[R]. SAE Technical Paper 2017-01-2093, 2017
    [28] MÖLLER C, SCHMIDT H C, SHAH N H, et al. Enhanced absolute accuracy of an industrial milling robot using stereo camera system[J]. Procedia Technology, 2016, 26: 389-398 doi: 10.1016/j.protcy.2016.08.050
    [29] SUSEMIHL H, MOELLER C, KOTHE S, et al. High accuracy mobile robotic system for machining of large aircraft components[J]. SAE International Journal of Aerospace, 2016, 9(2): 231-238 doi: 10.4271/2016-01-2139
    [30] MOELLER C, SCHMIDT H C, KOCH P, et al. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE International Journal of Aerospace, 2017, 10(2): 100-108 doi: 10.4271/2017-01-2165
    [31] SUSEMIHL H, BRILLINGER C, STVRMER S P, et al. Referencing strategies for high accuracy machining of large aircraft components with mobile robotic systems[R]. SAE Technical Paper 2017-01-2166, 2017
    [32] 李赟程. 基于ROS平台下高维构形空间中机械臂的运动规划研究[D]. 北京: 北京工业大学, 2017

    LI Y C. Reasearch of motion planning of manipulator in High-dimensional configuration space based on ROS[D]. Beijing: Beijing University of Technology, 2017 (in Chinese)
    [33] ZHANG H J, BUTZKE J, LIKHACHEV M. Combining global and local planning with guarantees on completeness[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012: 4500-4506
    [34] WANG L C, YONG L S, ANG M H. Hybrid of global path planning and local navigation implemented on a mobile robot in indoor environment[C]//Proceedings of the IEEE Internatinal Symposium on Intelligent Control. Vancouver, BC, Canada: IEEE, 2002: 821-826
    [35] ZAFAR M N, MOHANTA J C. Methodology for path planning and optimization of mobile robots: a review[J]. Procedia Computer Science, 2018, 133: 141-152 doi: 10.1016/j.procs.2018.07.018
    [36] GARG V, TIWARI R. A chronological review of the approaches used for multi robot navigation[C]//Proceedings of the International Conference on Recent Trends in Engineering, Science & Technology-(ICRTEST 2016). Hyderabad, India, 2016: 1-8
    [37] HE X X, CHEN L T. Path planning based on grid-potential fields[C]// Proceedings of 2008 International Conference on Computer Science and Software Engineering. Wuhan, China: IEEE, 2008: 1114-1116
    [38] ZUO L, GUO Q, XU X, et al. A hierarchical path planning approach based on A and least-squares policy iteration for mobile robots[J]. Neurocomputing, 2015, 170: 257-266 doi: 10.1016/j.neucom.2014.09.092
    [39] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[C]//Proceedings of 1985 IEEE International Conference on Robotics and Automation. St. Louis, MO, USA: IEEE, 1985: 500-505
    [40] HUI N B, PRATIHAR D K. A comparative study on some navigation schemes of a real robot tackling moving obstacles[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(4-5): 810-828 doi: 10.1016/j.rcim.2008.12.003
    [41] MAC T T, COPOT C, TRAN D T, et al. Heuristic approaches in robot path planning: a survey[J]. Robotics and Autonomous Systems, 2016, 86: 13-28 doi: 10.1016/j.robot.2016.08.001
    [42] HUANG L. A potential field approach for controlling a mobile robot to track a moving target[C]//Proceedings of 2007 IEEE 22nd International Symposium on Intelligent Control. Singapore: IEEE, 2007: 65-70
    [43] HUANG L. Velocity planning for a mobile robot to track a moving target-a potential field approach[J]. Robotics and Autonomous Systems, 2009, 57(1): 55-63 doi: 10.1016/j.robot.2008.02.005
    [44] KOWALCZUK Z, DUZINKIEWICZ K. Planning robot trajectories using a modified artificial potential method[J]. IFAC Proceedings Volumes, 2007, 40(9): 403-406 doi: 10.3182/20070723-3-PL-2917.00066
    [45] CETIN O, ZAGLI I, YILMAZ G. Establishing obstacle and collision free communication relay for UAVs with artificial potential fields[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1): 361-372
    [46] VALBUENA L, TANNER H G. Hybrid potential field based control of differential drive mobile robots[J]. Journal of Intelligent and Robotic Systems, 2012, 68(3-4): 307-322 doi: 10.1007/s10846-012-9685-6
    [47] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580 doi: 10.1109/70.508439
    [48] HWANG Y K, AHUJA N. Gross motion planning-a survey[J]. ACM Computing Surveys, 1992, 24(3): 219-291 doi: 10.1145/136035.136037
    [49] TAKAHASHI O, SCHILLING R J. Motion planning in a plane using generalized Voronoi diagrams[J]. IEEE Transactions on Robotics and Automation, 1989, 5(2): 143-150 doi: 10.1109/70.88035
    [50] ASANO T, ASANO T, GUIBAS L, et al. Visibility-polygon search and euclidean shortest paths[C]//Proceedings of 26th Annual Symposium on Foundations of Computer Science (SFCS 1985). Portland, OR, USA: IEEE, 1985: 155-164
    [51] KEIL J M, SACK J R. Minimum decompositions of polygonal objects[J]. Machine Intelligence and Pattern Recognition, 1985, 2: 197-216 http://www.sciencedirect.com/science/article/pii/B9780444878069500128
    [52] JIANG Z X, WANG X M, XIE R. 3-D online route planning for UAVs based on an improved PRM[C]//Proceedings of the IEEE Conference Anthology. Chongqing, China: IEEE, 2013: 1-5
    [53] HABIB N, PURWANTO D, SOEPRIJANTO A. Mobile robot motion planning by point to point based on modified ant colony optimization and voronoi diagram[C]// Proceedings of 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA). Lombok, Indonesia: IEEE, 2016: 613-618
    [54] LEE J, KWON O, ZHANG L J, et al. A selective retraction-based RRT planner for various environments[J]. IEEE Transactions on Robotics, 2014, 30(4): 1002-1011 doi: 10.1109/TRO.2014.2309836
    [55] DORIGO M, STVTZLE T. Ant colony optimization[M]. Cambridge: MIT Press, 2004
    [56] ZHANG Q, MA J C, LIU Q. Path planning based quadtree representation for mobile robot using hybrid-simulated annealing and ant colony optimization algorithm[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012: 2537-2542
    [57] ENGLOT B, HOVER F. Multi-goal feasible path planning using ant colony optimization[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 2255-2260
    [58] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the ICNN' 95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995: 1942-1948
    [59] MASEHIAN E, SEDIGHIZADEH D. A multi-objective PSO-based algorithm for robot path planning[C]//Proceedings of 2010 IEEE International Conference on Industrial Technology. Vina del Mar, Chile: IEEE, 2010: 465-470
    [60] SHARMA K D, CHATTERJEE A, RAKSHIT A. A PSO-lyapunov hybrid stable adaptive fuzzy tracking control approach for vision-based robot navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(7): 1908-1914 doi: 10.1109/TIM.2012.2182868
    [61] RATH M K, DEEPAK B B V L. PSO based system architecture for path planning of mobile robot in dynamic environment[C]//Proceedings of 2015 Global Conference on Communication Technologies. Thuckalay, India: IEEE, 2015: 797-801
    [62] 徐毓良, 杨起帆. 机器人三维空间无碰撞路径规划[J]. 机器人, 1991, 13(5): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR199105000.htm

    XU Y L, YANG Q F. Robot collision-free path planning in 3-D space[J]. Robot, 1991, 13(5): 1-6 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR199105000.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  165
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-31
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回