留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MED与TQWT相结合的滚动轴承早期故障特征提取

张龙 易剑昱 熊国良 毛志德

张龙, 易剑昱, 熊国良, 毛志德. MED与TQWT相结合的滚动轴承早期故障特征提取[J]. 机械科学与技术, 2021, 40(6): 863-869. doi: 10.13433/j.cnki.1003-8728.20200138
引用本文: 张龙, 易剑昱, 熊国良, 毛志德. MED与TQWT相结合的滚动轴承早期故障特征提取[J]. 机械科学与技术, 2021, 40(6): 863-869. doi: 10.13433/j.cnki.1003-8728.20200138
ZHANG Long, YI Jianyu, XIONG Guoliang, MAO Zhide. Incipient Fault Feature Extraction for Rolling Bearings Combined with MED and TQWT[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 863-869. doi: 10.13433/j.cnki.1003-8728.20200138
Citation: ZHANG Long, YI Jianyu, XIONG Guoliang, MAO Zhide. Incipient Fault Feature Extraction for Rolling Bearings Combined with MED and TQWT[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 863-869. doi: 10.13433/j.cnki.1003-8728.20200138

MED与TQWT相结合的滚动轴承早期故障特征提取

doi: 10.13433/j.cnki.1003-8728.20200138
基金项目: 

国家自然科学基金项目 51665013

国家自然科学基金项目 51865010

江西省教育厅科学技术研究项目 GJJ200616

江西省研究生创新基金项目 YC2020-S335

详细信息
    作者简介:

    张龙(1980-), 副教授, 博士, 研究方向为工程信号处理与智能算法及其在机械故障诊断中的应用, longzh@ecjtu.edu.cn

  • 中图分类号: TH133.3

Incipient Fault Feature Extraction for Rolling Bearings Combined with MED and TQWT

  • 摘要: 针对滚动轴承早期故障冲击特征微弱且故障信息难以识别的问题, 提出了一种最小熵解卷积(MED)与可调品质因子小波变换(TQWT)相结合的滚动轴承早期故障冲击特征提取方法。由于(MED)能够突出信号中的冲击特征成分, 首先对振动信号进行MED预处理, 使受到传输路径影响的微弱冲击成分得到一定程度的增强。再利用TQWT对预处理后的信号进行分解重构, 得到若干个子带信号。对比不同品质因子Q下的各子带信号峭度值, 根据峭度最大原则确定子带中的最佳分量并对其进行包络谱分析, 从而根据轴承故障特征频率确定轴承健康状态。仿真信号验证了所提方法的有效性, 实验信号表明了该方法在轴承早期故障诊断中具有一定的优势。
  • 图  1  双通道滤波器组

    图  2  TQWT频率响应

    图  3  本文所提方法流程图

    图  4  内圈故障仿真信号

    图  5  本文所提方法分析结果

    图  6  轴承疲劳试验台结构简图

    图  7  疲劳试验全寿命周期Rms演化

    图  8  第534组数据时域波形及其包络谱

    图  9  No.534本文方法分析结果

    图  10  No.534 TQWT分析

    图  11  No.534小波分析结果

  • [1] 朱可恒. 滚动轴承振动信号特征提取及诊断方法研究[D]. 大连: 大连理工大学, 2013

    ZHU K H. Research on vibration signal based rolling element bearing feature extraction and fault diagnosis method[D]. Dalian: Dalian University of Technology, 2013 (in Chinese)
    [2] 王楠, 陈长征, 孙长城, 等. 低速滚动轴承故障诊断方法研究[J]. 机械科学与技术, 2007, 26(9): 1105-1108 doi: 10.3321/j.issn:1003-8728.2007.09.003

    WANG N, CHEN C Z, SUN C C, et al. Study of fault diagnosis method for low-speed rolling bearings[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(9): 1105-1108 (in Chinese) doi: 10.3321/j.issn:1003-8728.2007.09.003
    [3] 程卫东, 刘东东, 赵德尊. 基于角域AR模型滤波的滚动轴承故障诊断[J]. 振动、测试与诊断, 2018, 38(3): 590-596 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201803025.htm

    CHENG W D, LIU D D, ZHAO D Z. Rolling bearing fault diagnosis based on angle domain AR model filtering[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(3): 590-596 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201803025.htm
    [4] 吕中亮, 汤宝平, 周忆, 等. 基于网格搜索法优化最大相关峭度反卷积的滚动轴承早期故障诊断方法[J]. 振动与冲击, 2016, 35(15): 29-34 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201615006.htm

    LV Z L, TANG B P, ZHOU Y, et al. Rolling bearing early fault diagnosis based on maximum correlated kurtosis deconvolution optimized with grid search algorithm[J]. Journal of Vibration and Shock, 2016, 35(15): 29-34 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201615006.htm
    [5] WIGGINS R A. Minimum entropy deconvolution[J]. Geoexploration, 1978, 16(1-2): 21-35 doi: 10.1016/0016-7142(78)90005-4
    [6] BARSZCZ T, SAWALHI N. Fault detection enhancement in rolling element bearings using the minimum entropy deconvolution[J]. Archives of Acoustics, 2012, 2(37): 131-141 http://www.oalib.com/paper/1318237
    [7] JIANG R L, CHEN J, DONG G M, et al. The weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelop spectrum[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(5): 1116-1129 doi: 10.1177/0954406212457892
    [8] 张龙, 胡俊锋, 熊国良. 基于MED和SK的滚动轴承循环冲击特征增强[J]. 振动、测试与诊断, 2017, 37(1): 97-101 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201701018.htm

    ZHANG L, HU J F, XIONG G L. Cyclic shock enhancement by the combination of minimum entropy deconvolution and spectral kurtosis[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(1): 97-101 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201701018.htm
    [9] ENDO H, RANDALL R B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 906-919 doi: 10.1016/j.ymssp.2006.02.005
    [10] SELESNICK I W. Wavelet transform with tunable Q-Factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575 doi: 10.1109/TSP.2011.2143711
    [11] ZHANG C L, LI B, CHEN B Q, et al. Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform[J]. Mechanical Systems and Signal Processing, 2015, 64-65: 162-187 http://smartsearch.nstl.gov.cn/paper_detail.html?id=eb91466caa9e8e9b64c0cae58a45f94c
    [12] CAI G G, CHEN X F, HE Z J. Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox[J]. Mechanical Systems and Signal Processing, 2013, 41(1-2): 34-53 doi: 10.1016/j.ymssp.2013.06.035
    [13] LUO J S, YU D J, LIANG M. A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform[J]. Measurement Science and Technology, 2013, 24(5): 055009 doi: 10.1088/0957-0233/24/5/055009
    [14] 唐贵基, 王晓龙. 可调品质因子小波变换在滚动轴承微弱故障特征提取中的应用[J]. 中国电机工程学报, 2016, 36(3): 746-754 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201603020.htm

    TANG G J, WANG X L. Application of tunable Q-factor wavelet transform to feature extraction of weak fault for rolling bearing[J]. Proceedings of the CSEE, 2016, 36(3): 746-754 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201603020.htm
    [15] QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4-5): 1066-1090 http://www.sciencedirect.com/science/article/pii/S0022460X0500221X
    [16] 王礼鹏. 基于小波分析的滚动轴承故障检测方法[J]. 文山学院学报, 2018, 31(3): 40-44 https://www.cnki.com.cn/Article/CJFDTOTAL-WSSZ201803012.htm

    WANG L P. Rolling bearing fault detection method based on wavelet analysis[J]. Journal of Wenshan Teachers College, 2018, 31;3): 40-44 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSSZ201803012.htm
  • 加载中
图(11)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  109
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回