留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砂轮离散元建模的镍基合金磨削加工数值模拟

宋文韬 周里群 李玉平 彭杰

宋文韬, 周里群, 李玉平, 彭杰. 砂轮离散元建模的镍基合金磨削加工数值模拟[J]. 机械科学与技术, 2021, 40(5): 755-761. doi: 10.13433/j.cnki.1003-8728.20200129
引用本文: 宋文韬, 周里群, 李玉平, 彭杰. 砂轮离散元建模的镍基合金磨削加工数值模拟[J]. 机械科学与技术, 2021, 40(5): 755-761. doi: 10.13433/j.cnki.1003-8728.20200129
SONG Wentao, ZHOU Liqun, LI Yuping, PENG Jie. Grinding Wheel Modeling and Numerical Simulation in Grinding of Nickel-based Alloy via Discrete Element Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 755-761. doi: 10.13433/j.cnki.1003-8728.20200129
Citation: SONG Wentao, ZHOU Liqun, LI Yuping, PENG Jie. Grinding Wheel Modeling and Numerical Simulation in Grinding of Nickel-based Alloy via Discrete Element Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 755-761. doi: 10.13433/j.cnki.1003-8728.20200129

砂轮离散元建模的镍基合金磨削加工数值模拟

doi: 10.13433/j.cnki.1003-8728.20200129
详细信息
    作者简介:

    宋文韬(1992-), 硕士研究生, 研究方向为数字化设计与制造, woaiwentao92@163.com

    通讯作者:

    周里群, 教授, 硕士生导师, johnzlq@163.com

  • 中图分类号: TG74

Grinding Wheel Modeling and Numerical Simulation in Grinding of Nickel-based Alloy via Discrete Element Method

  • 摘要: 为探究镍基合金在磨削加工中的材料去除机理,采用圆弧角度随机切分法,对砂轮表层磨粒进行了轮廓、分布的几何建模;采用平行键粘结线性标定法,对镍基合金材料进行了离散元模型校准;建立了砂轮磨粒磨削镍基合金加工的动态仿真。仿真结果表明:磨削过程中,磨削力存在动态波动;磨削切向力、法向力随着砂轮表面磨粒轮廓边数增加而减小;磨削切向力、法向力随着砂轮旋转速度增加而减小,数值模拟方法和结果对镍基合金磨削加工过程材料去除机理研究具有一定参考价值。
  • 图  1  磨粒随机分布和形态示意图

    图  2  拉伸弹性模量变化曲线

    图  3  泊松比变化曲线表

    图  4  单轴拉伸强度变化曲线

    图  5  镍基合金材料磨削加工

    图  6  磨削力随时间变化曲线

    图  7  虚拟砂轮磨削镍基合金法向力与切向力变化

    表  1  改变平行键有效模量参数实验表

    序号 参数 取值
    1 Ec/GPa 100, 150, 200, 250, 300, 350, 400, 450, 500
    2 kn/ks 1.5
    3 σc/MPa 5 000
    4 τc/MPa 1 000
    5 μ 0.7
    下载: 导出CSV

    表  2  改变平行键刚度比仿真参数表

    序号 参数 取值
    1 Ec/GPa 223.89
    2 kn/ks 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5
    3 σc/MPa 5 000
    4 τc/MPa 1 000
    5 μ 0.7
    下载: 导出CSV

    表  3  改变平行键的粘结切向强度与抗拉强度比仿真参数表

    序号 Ec/GPa kn/ks σc/MPa τc/MPa μ
    1 223.89 4.722 2 500 500 0.7
    2 223.89 4.722 3750 750 0.7
    3 223.89 4.722 5 000 1 000 0.7
    4 223.89 4.722 6 250 1 250 0.7
    5 223.89 4.722 7 500 1 500 0.7
    6 223.89 4.722 8 750 1 750 0.7
    7 223.89 4.722 10 000 2 000 0.7
    下载: 导出CSV

    表  4  微观参数正交数值表及宏观参数计算结果

    序号 A B C D E a b c
    1 200 3.5 3 000 800 0.4 155 21 1 100
    2 220 4.0 3 500 1 000 0.5 153 23 1 408
    3 240 4.5 4 000 1 200 0.6 150 25 1 713
    4 260 5.0 4 500 1 400 0.7 152 26 2 027
    5 200 3.5 3 500 1 200 0.7 174 21 1 547
    6 220 4.0 3 000 1 400 0.6 171 23 1 335
    7 240 4.5 4 500 800 0.5 165 25 1 237
    8 260 5.0 4 000 1 000 0.4 158 27 1 514
    9 200 3.5 4 000 1 400 0.5 190 21 1 766
    10 220 4.0 4 500 1 200 0.4 180 23 1 695
    11 240 4.5 3 000 1 000 0.7 185 25 1 347
    12 260 5.0 3 500 800 0.6 176 26 1 256
    13 200 3.5 4 500 1 000 0.6 201 21 1 384
    14 220 4.0 4 000 800 0.7 197 23 1 169
    15 240 4.5 3 500 1 400 0.4 195 25 1 546
    16 260 5.0 3 000 1 200 0.5 196 28 1 352
    下载: 导出CSV

    表  5  GH4169离散元模型与实测力学性能对比

    力学特性参数 文献结果 离散元模拟结果 相对误差
    弹性模量Et/GPa 204 196 3.9%
    泊松比υ 0.3 0.28 6.7%
    抗拉强度σt/MPa 1280 1352 5.6%
    下载: 导出CSV

    表  6  磨削仿真加工参数表

    参数 参数取值
    磨粒形状的边数n 3, 5, 7, 9
    工件进给速度Vw/(mm·s-1) 50
    磨削深度ap/μm 20
    砂轮线速度Vs/(m·s-1) 10, 20, 30, 40
    下载: 导出CSV
  • [1] 丁文锋, 苗情, 李本凯, 等. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报, 2019, 55(1): 189-215 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201901020.htm

    DING W F, MIAO Q, LI B K, et al. Review on grinding technology of nickel-based superalloys used for aero-engine[J]. Journal of Mechanical Engineering, 2019, 55(1): 189-215 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201901020.htm
    [2] ANDERSON D, WARKENTIN A, BAUER R. Experimental and numerical investigations of single abrasive-grain cutting[J]. International Journal of Machine Tools and Manufacture, 2011, 51(12): 898-910 doi: 10.1016/j.ijmachtools.2011.08.006
    [3] OPÖZ T T, CHEN X. Experimental investigation of material removal mechanism in single grit grinding[J]. International Journal of Machine Tools and Manufacture, 2012, 63: 32-40 doi: 10.1016/j.ijmachtools.2012.07.010
    [4] DAI C W, DING W F, YE J Z, et al. Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel[J]. Precision Engineering, 2018, 52: 192-200 doi: 10.1016/j.precisioneng.2017.12.005
    [5] LIU W, DENG Z H, SHANG Y Y, et al. Parametric evaluation and three-dimensional modelling for surface topography of grinding wheel[J]. International Journal of Mechanical Sciences, 2019, 155: 334-342 doi: 10.1016/j.ijmecsci.2019.03.006
    [6] JIANG S Q, LI T T, TAN Y Q. A DEM methodology for simulating the grinding process of SiC ceramics[J]. Procedia Engineering, 2015, 102: 1803-1810 doi: 10.1016/j.proeng.2015.01.317
    [7] LI H N, YU T B, ZHU L D, et al. Analysis of loads on grinding wheel binder in grinding process: insights from discontinuum-hypothesis-based grinding simulation[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12): 1943-1960 doi: 10.1007/s00170-014-6767-6
    [8] OSA J L, SÁNCHEZ J A, ORTEGA N, et al. Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models[J]. International Journal of Machine Tools and Manufacture, 2016, 110: 43-54 doi: 10.1016/j.ijmachtools.2016.07.004
    [9] 周喻, 吴顺川, 焦建津, 等. 基于BP神经网络的岩土体细观力学参数研究[J]. 岩力土力学, 2011, 32(12): 3821-3826 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112044.htm

    ZHOU Y, WU S C, JIAO J J, et al. Research on mesomechanical parameters of rock and soil mass based on BP neural network[J]. Rock and Soil Mechanics, 2011, 32(12): 3821-3826 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112044.htm
    [10] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究[J]. 地下空间与工程学报, 2018, 14(5): 1240-1249 https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm

    CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240-1249 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm
    [11] DEISMAN N, IVARS D M, PIERCE M. PFC2D smooth joint contact model numerical experiments[C]//Proceedings of GeoEdmonton'08. Edmonton: GeoEdmonton'08 Organizing Committee, 2008: 83-87
    [12] 彭锐涛, 张成, 唐新姿, 等. 预应力切削过程刀具磨损的离散元模拟与试验研究[J]. 机械科学与技术, 2015, 34(3): 434-439 doi: 10.13433/j.cnki.1003-8728.2015.0322

    PENG R T, ZHANG C, TANG X Z, et al. DEM simulation and experimental study of tool wear in prestressed cutting process[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3): 434-439 (in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0322
    [13] 蒋明镜, 方威, 司马军. 模拟岩石的平行粘结模型微观参数标定[J]. 山东大学学报, 2015, 45(4): 50-56 https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201504008.htm

    JIANG M J, FANG W, SIMA J. Calibration of micro-parameters of parallel bonded model for rocks[J]. Journal of Shandong University, 2015, 45(4): 50-56 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201504008.htm
    [14] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-364 doi: 10.1016/j.ijrmms.2004.09.011
    [15] 何树江. 基于颗粒流的灰岩细观力学参数标定方法及其敏感性分析[D]. 济南: 山东大学, 2018

    HE S J. Calibration method and sensitivity analysis of micromechanic parameters for limestone based on particle flow[D]. Jinan: Shandong University, 2018 (in Chinese)
    [16] 赵国彦, 戴兵, 马驰. 平行黏结模型中细观参数对宏观特性影响研究[J]. 岩石力学与工程学报, 2012, 31(7): 1491-1498 doi: 10.3969/j.issn.1000-6915.2012.07.024

    ZHAO G Y, DAI B, MA C. Study of effects of microparameters on macroproperties for parallel bonded model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1491-1498 (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.07.024
    [17] 石崇, 徐卫亚. 颗粒流数值模拟技巧与实践[M]. 北京: 中国建筑工业出版社, 2015: 263-271

    SI C, XU W Y. Numerical simulation technology and application with particle flow code[M]. Beijing: China Architecture & Building Press, 2015: 263-271 (in Chinese)
    [18] YANG B D, JIAO Y, LEI S T. A study on the effects of microparameters on macroproperties for specimens created by bonded particles[J]. Engineering Computations, 2006, 23(6): 607-631 doi: 10.1108/02644400610680333
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  28
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回