留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式驱动电动汽车操稳性鲁棒增益调度控制研究

张军 武楠

张军, 武楠. 分布式驱动电动汽车操稳性鲁棒增益调度控制研究[J]. 机械科学与技术, 2021, 40(5): 780-786. doi: 10.13433/j.cnki.1003-8728.20200115
引用本文: 张军, 武楠. 分布式驱动电动汽车操稳性鲁棒增益调度控制研究[J]. 机械科学与技术, 2021, 40(5): 780-786. doi: 10.13433/j.cnki.1003-8728.20200115
ZHANG Jun, WU Nan. Robust Gain Scheduling Control of a Distributed Drive Electric Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 780-786. doi: 10.13433/j.cnki.1003-8728.20200115
Citation: ZHANG Jun, WU Nan. Robust Gain Scheduling Control of a Distributed Drive Electric Vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 780-786. doi: 10.13433/j.cnki.1003-8728.20200115

分布式驱动电动汽车操稳性鲁棒增益调度控制研究

doi: 10.13433/j.cnki.1003-8728.20200115
基金项目: 

国家重点研发计划项目 2017YFB0103801

详细信息
    作者简介:

    张军(1971-), 副教授, 硕士生导师, 研究方向为汽车动力学控制及汽车底盘结构设计,bitzj@bit.edu.cn

  • 中图分类号: TG156

Robust Gain Scheduling Control of a Distributed Drive Electric Vehicle

  • 摘要: 研究了当车速以及轮胎刚度变化时的分布式驱动电动汽车的操控稳定性问题。针对时变的纵向速度,建立了以车速为调度变量的线性变参数(LPV)模型并设计了鲁棒增益调度控制器以保证车辆的性能。考虑到轮胎的非线性,提出了一种模糊融合策略,利用估计的车辆滑移角对控制器的输出进行加权,以使其更好地适应轮胎的变化并能够实时调整其控制变量权重。仿真结果表明,该策略可以在车速变化和轮胎侧偏刚度非线性的情况下有效地改善车辆性能。
  • 图  1  模型关系

    图  2  参考模型近似

    图  3  质心侧偏角和轮胎侧偏刚度的关系

    图  4  车辆控制系统架构

    图  5  加权函数

    图  6  车辆前轮转角

    图  7  40 km/h横摆角速度变化

    图  8  40 km/h质心侧偏角变化

    图  9  40 km/h加权因子变化

    图  10  40 km/h轮胎侧偏刚度变化

    图  11  120 km/h横摆角速度变化

    图  12  120 km/h质心侧偏角变化

    图  13  120 km/h加权因子变化

    图  14  120 km/h轮胎侧偏刚度变化

    表  1  控制器对比

    名称 RGS1 RGS2
    适用范围 小侧向加速度 大侧向加速度
    质心侧偏角大小
    前后轮胎刚度模型
    控制变量 以横摆为主 以质心为主
    频域调节函数
    下载: 导出CSV
  • [1] 徐坤, 骆媛媛, 杨影, 等. 分布式电驱动车辆状态感知与控制研究综述[J]. 机械工程学报, 2019, 55(22): 60-79 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201922008.htm

    XU K, LUO Y Y, YANG Y, et al. Review on state perception and control for distributed drive electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(22): 60-79 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201922008.htm
    [2] WANG Z Y, MONTANARO U, FALLAH S, et al. A gain scheduled robust linear quadratic regulator for vehicle direct yaw moment control[J]. Mechatronics, 2018, 51: 31-45 doi: 10.1016/j.mechatronics.2018.01.013
    [3] HOU R F, ZHAI L, SUN T M. Steering stability control for a four hub-motor independent-drive electric vehicle with varying adhesion coefficient[J]. Energies, 2018, 11(9): 1
    [4] FUJIMOTO H, TAKAHASHI N, TSUMASAKA A, et al. Motion control of electric vehicle based on cornering stiffness estimation with yaw-moment observer[C]//Proceedings of the 9th IEEE International Workshop on Advanced Motion Control. Istanbul, Turkey: IEEE, 2006
    [5] LI L, JIA G, CHEN J, et al. A novel vehicle dynamics stability control algorithm based on the hierarchical strategy with constrain of nonlinear tyre forces[J]. Vehicle System Dynamics, 2015, 53(8): 1093-1116 doi: 10.1080/00423114.2015.1025082
    [6] JONASSON M, ANDREASSON J, SOLYOM S, et al. Utilization of actuators to improve vehicle stability at the limit: From hydraulic brakes toward electric propulsion[J]. Journal of Dynamic Systems, Measurement, and Control, 2011
    [7] XIONG L, YU Z P, WANG Y, et al. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation[J]. Vehicle System Dynamics, 2012, 50(6): 831-846 doi: 10.1080/00423114.2012.663921
    [8] CHOI M, CHOI S B. Model predictive control for vehicle yaw stability with practical concerns[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3539-3548 doi: 10.1109/TVT.2014.2306733
    [9] HU J S, WANG Y F, FUJIMOTO H, et al. Robust yaw stability control for in-wheel motor electric vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1360-1370 doi: 10.1109/TMECH.2017.2677998
    [10] DING S H, LIU L, ZHENG W X. Sliding mode direct yaw-moment control design for in-wheel electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6752-6762 doi: 10.1109/TIE.2017.2682024
    [11] APKARIAN P, GAHINET P, BECKER G. Self-scheduled Hcontrol of linear parameter-varying systems: a design example[J]. Automatica, 1995, 31(9): 1251-1261 doi: 10.1016/0005-1098(95)00038-X
    [12] GUO L, LIN X, GE P S, et al. Torque distribution for electric vehicle with four in-wheel motors by considering energy optimization and dynamics performance[C]//Proceedings of 2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA: IEEE, 2017: 1619-1624
    [13] WANG C Y, LI W K, ZHAO W Z, et al. Torque distribution of electric vehicle with four in-heel motors based on road adhesion margin[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2019, 36(1): 181-188
    [14] 余卓平, 杨鹏飞, 熊璐. 控制分配理论在车辆动力学控制中的应用[J]. 机械工程学报, 2014, 50(18): 99-107 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201418016.htm

    YU Z P, YANG P F, XIONG L. Application of control allocation in distributed drive electric vehicle[J]. Journal of Mechanical Engineering, 2014, 50(18): 99-107 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201418016.htm
    [15] 邹广才, 罗禹贡, 李克强. 基于全轮纵向力优化分配的4WD车辆直接横摆力矩控制[J]. 农业机械学报, 2009, 40(5): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200905000.htm

    ZOU G C, LUO Y G, LI K Q. 4WD vehicle DYC based on tire longitudinal forces optimization distribution[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(5): 1-6 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200905000.htm
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  45
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回