留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

救援机器人柔性关节的设计与稳定性分析

高康平 展梓荃 焦生杰 魏孟 徐信芯

高康平,展梓荃,焦生杰, 等. 救援机器人柔性关节的设计与稳定性分析[J]. 机械科学与技术,2020,39(8):1191-1195 doi: 10.13433/j.cnki.1003-8728.20200109
引用本文: 高康平,展梓荃,焦生杰, 等. 救援机器人柔性关节的设计与稳定性分析[J]. 机械科学与技术,2020,39(8):1191-1195 doi: 10.13433/j.cnki.1003-8728.20200109
Gao Kangping, Zhan Ziquan, Jiao Shengjie, Wei Meng, Xu Xinxin. Design and Stability Analysis of Flexible Joint of Rescue Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1191-1195. doi: 10.13433/j.cnki.1003-8728.20200109
Citation: Gao Kangping, Zhan Ziquan, Jiao Shengjie, Wei Meng, Xu Xinxin. Design and Stability Analysis of Flexible Joint of Rescue Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1191-1195. doi: 10.13433/j.cnki.1003-8728.20200109

救援机器人柔性关节的设计与稳定性分析

doi: 10.13433/j.cnki.1003-8728.20200109
基金项目: 国家自然科学基金青年项目(51805041)、河南省交通运输厅科技项目 (2019J3)及新乡市重大科技专项 (ZD19007)资助
详细信息
    作者简介:

    高康平(1994−),博士研究生,研究方向为机器人运动学动力学,系统结构分析,1442874043@qq.com

    通讯作者:

    焦生杰,教授,博士生导师,chd_jiao@163.com

  • 中图分类号: TP242

Design and Stability Analysis of Flexible Joint of Rescue Robot

  • 摘要: 为了提高救援机器人在非结构环境中的顺应能力,引入传动机构等效质量的概念,考虑电机内部阻尼对弹性驱动器动力学模型的影响,建立了基于力源驱动的串联弹性驱动器动力学模型。采用PID单位负反馈的控制方式,通过Laplace变换得到系统的开环传递函数与闭环传递函数,运用Nyquist判据与Bode图分析了系统的稳定性。通过仿真实验,得到了系统的阶跃信号跟踪响应。仿真结果与频域特性分析结果对比,验证了救援机器人柔性关节结构设计的合理性与稳定性。
  • 图  1  柔性关节传动系统的组成

    图  2  柔性关节动力学模型

    图  3  柔性关节力源控制模型

    4  开环系统Nyquist和Nyquist图局部放大图

    图  5  开环系统Bode图

    图  6  闭环系统Nyquist图

    图  7  闭环系统Bode图

    图  8  变刚度阶跃力跟随曲线

    表  1  不同弹簧刚度下开环传递函数特征方程的根

    弹簧刚度ks/(N·mm−1特征方程的根
    1 −0.0250+0.315 2i;−0.0250−0.315 2i
    5 −0.0250+0.706 7i;−0.0250−0.706 7i
    10 −0.0250+0.999 7i;−0.0250−0.999 7i
    15 −0.0250+1.224 5i;−0.0250−1.224 5i
    下载: 导出CSV

    表  2  不同弹簧刚度下闭环传递函数特征方程的根

    弹簧刚度ks/
    (N·mm−1)
    特征方程的根
    1 −0.1118+1.756 7i;−0.111 8−1.756 7i;−0.0065
    5 −0.4718+3.907 9i;−0.471 8−3.907 9i;−0.0065
    10 −0.9218+5.489 8i;−0.9218−5.489 8i;−0.0065
    15 −1.3718+6.678 4i;−1.3718−6.678 4i;−0.0065
    下载: 导出CSV
  • [1] Saputra R P, Kormushev P. ResQbot: a mobile rescue robot for casualty extraction[C]//Proceedings of 2018 ACM/IEEE International Conference on Human-Robot Interaction. Chicago: HRI' 18 Companion, 2018: 239-240.
    [2] Ning M, Ma Z F, Chen H L, et al. Design and analysis for a multifunctional rescue robot with four-bar wheel-legged structure[J]. Advances in Mechanical Engineering, 2018, 10(2) doi: 10.1177/1687814017747399
    [3] 葛世荣, 朱华. 危险环境下救援机器人技术发展现状与趋势[J]. 煤炭科学技术, 2017, 45(5): 1-8, 21

    Ge S R, Zhu H. Technical development status and tendency of rescue robot in dangerous environment[J]. Coal Science and Technology, 2017, 45(5): 1-8, 21 (in Chinese)
    [4] Mehrjooee O, Dehkordi S F, Korayem M H. Dynamic modeling and extended bifurcation analysis of flexible-link manipulator[J]. Mechanics Based Design of Structures and Machines, 2020, 48(1): 87-100 doi: 10.1080/15397734.2019.1665542
    [5] Ozakyol H, Karaman C, Bingul Z. Advanced robotics analysis toolbox for kinematic and dynamic design and analysis of high‐DOF redundant serial manipulators[J]. Computer Applications in Engineering Education, 2019, 27(6): 1429-1452 doi: 10.1002/cae.22160
    [6] 刘彦伟, 黄响, 王李梦, 等. 仿生爪刺式双足爬壁机器人设计与分析[J]. 机械科学与技术, 2019, 38(8): 1185-1190

    Liu Y W, Huang X, Wang L M, et al. Design and analysis of a bio-inspired biped wall-climbing robot with spines[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(8): 1185-1190 (in Chinese)
    [7] Werner A, Henze B, Loeffl F, et al. Optimal and robust walking using intrinsic properties of a series-elastic robot[C]//Proceedings of 2017 IEEE-RAS 17th International Conference on Humanoid Robotics. Birmingham: IEEE, 2017: 143-150.
    [8] 梁明轩, 李正刚, 唐任仲, 等. 基于柔性多体动力学的机械臂结构优化设计[J]. 中国机械工程, 2017, 28(21): 2562-2566 doi: 10.3969/j.issn.1004-132X.2017.21.008

    Liang M X, Li Z G, Tang R Z, et al. Structure optimization design of robot arm based on flexible multi-body dynamics[J]. China Mechanical Engineering, 2017, 28(21): 2562-2566 (in Chinese) doi: 10.3969/j.issn.1004-132X.2017.21.008
    [9] 梁涛, 梁延德, 何福本. 基于串联弹性驱动器的柔顺机械臂设计与仿真[J]. 组合机床与自动化加工技术, 2020,(2): 145-148, 153

    Liang T, Liang Y D, He F B. Design and simulation analysis of a compliant robotic arm based on series elastic actuator[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020,(2): 145-148, 153 (in Chinese)
    [10] 李蕊, 张明路, 孙凌宇, 等. 柔性机械手动力学研究进展[J]. 机械设计, 2013, 30(1): 1-5 doi: 10.3969/j.issn.1001-2354.2013.01.001

    Li R, Zhang M L, Sun L Y, et al. Dynamics research of flexible manipulators[J]. Journal of Machine Design, 2013, 30(1): 1-5 (in Chinese) doi: 10.3969/j.issn.1001-2354.2013.01.001
    [11] 陈凯旋. 基于SEA的柔性关节结构设计及控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    Chen K X. Research on structure design and control method of flexible joint based on SEA[D]. Harbin: Harbin Engineering University, 2019 (in Chinese).
    [12] 马洪文, 王立权, 赵朋, 等. 串联弹性驱动器力驱动力学模型和稳定性分析[J]. 哈尔滨工程大学学报, 2012, 33(11): 1410-1416

    Ma H W, Wang L Q, Zhao P, et al. Research of dynamic dodel and stability of a series elastic actuator[J]. Journal of Harbin Engineering University, 2012, 33(11): 1410-1416 (in Chinese)
    [13] Cappello L, Xiloyannis M, Dinh B K, et al. Multistable series elastic actuators: design and control[J]. Robotics and Autonomous Systems, 2019, 118: 167-178 doi: 10.1016/j.robot.2019.04.014
    [14] Yano H, Chang J, Takano R, et al. Simultaneous optimization of trajectory and parameter for biped robot with series elastic actuators[J]. IFAC-PapersOnLine, 2019, 52(22): 7-12 doi: 10.1016/j.ifacol.2019.11.039
    [15] Ghidini S, Beschi M, Pedrocchi N, et al. Robust tuning rules for series elastic actuator PID cascade controllers[J]. IFAC-PapersOnLine, 2018, 51(4): 220-225 doi: 10.1016/j.ifacol.2018.06.069
    [16] Irmscher C, Woschke E, May E, et al. Design, optimisation and testing of a compact, inexpensive elastic element for series elastic actuators[J]. Medical Engineering & Physics, 2018, 52: 84-89
    [17] Verstraten T, Beckerle P, Furnémont R, et al. Series and parallel elastic actuation: impact of natural dynamics on power and energy consumption[J]. Mechanism and Machine Theory, 2016, 102: 232-246 doi: 10.1016/j.mechmachtheory.2016.04.004
    [18] Kong K, Bae J, Tomizuka M. A compact rotary series elastic actuator for human assistive systems[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 288-297 doi: 10.1109/TMECH.2010.2100046
    [19] 朱秋国, 熊蓉, 吕铖杰, 等. 新型串联弹性驱动器设计与速度控制[J]. 电机与控制学报, 2015, 19(6): 83-88

    Zhu Q G, Xiong R, Lü C J, et al. Novel series elastic actuator design and velocity control[J]. Electric Machines and Control, 2015, 19(6): 83-88 (in Chinese)
    [20] 李扬, 崔士鹏, 刘伊威. 一种抗冲击柔性关节的设计及仿真分析[J]. 机械传动, 2017, 41(11): 163-167

    Li Y, Cui S P, Liu Y W. Design and simulation analysis of an impact-resistant flexible joint[J]. Journal of Mechanical Transmission, 2017, 41(11): 163-167 (in Chinese)
    [21] 张秀丽, 谷小旭, 赵洪福, 等. 一种基于串联弹性驱动器的柔顺机械臂设计[J]. 机器人, 2016, 38(4): 385-394

    Zhang X L, Gu X X, Zhao H F, et al. Design of a compliant robotic arm based on series elastic actuator[J]. Robot, 2016, 38(4): 385-394 (in Chinese)
    [22] 史延雷, 张明路, 张小俊, 等. 一种旋转型机器人柔性关节设计与分析[J]. 中国机械工程, 2016, 27(18): 2494-2499, 2500 doi: 10.3969/j.issn.1004-132X.2016.18.014

    Shi Y L, Zhang M L, Zhang X J, et al. Design and analysis of a rotary-type robot flexible joint[J]. China Mechanical Engineering, 2016, 27(18): 2494-2499, 2500 (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.18.014
    [23] 尹鹏, 李满天, 郭伟, 等. 面向足式机器人的新型可调刚度柔性关节的设计及性能测试[J]. 机器人, 2014, 36(3): 322-329

    Yin P, Li M T, Guo W, et al. Design and testing of a novel joint with adjustable stiffness for legged robot[J]. Robot, 2014, 36(3): 322-329 (in Chinese)
    [24] 陈兵, 骆敏舟, 孙少明, 等. 基于仿生原理的节能减振类人机器人膝关节的设计[J]. 机器人, 2014, 36(2): 218-223

    Chen B, Luo M Z, Sun S M, et al. Design of energy-saving and vibration damping knee joint of humanoid robot based on bionic principles[J]. Robot, 2014, 36(2): 218-223 (in Chinese)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  88
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2020-08-05

目录

    /

    返回文章
    返回