留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压裂液对四通管冲蚀磨损的仿真分析

钟功祥 胥卜轩 谢锐 程柯文 吴陈

钟功祥,胥卜轩,谢锐, 等. 压裂液对四通管冲蚀磨损的仿真分析[J]. 机械科学与技术,2021,40(4):534-541 doi: 10.13433/j.cnki.1003-8728.20200099
引用本文: 钟功祥,胥卜轩,谢锐, 等. 压裂液对四通管冲蚀磨损的仿真分析[J]. 机械科学与技术,2021,40(4):534-541 doi: 10.13433/j.cnki.1003-8728.20200099
ZHONG Gongxiang, XU Boxuan, XIE Rui, CHENG Kewen, WU Chen. Simulation Analysis of Erosion Wear Induced by Hydraulic Fracturing Fluid in Cross-pipe[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 534-541. doi: 10.13433/j.cnki.1003-8728.20200099
Citation: ZHONG Gongxiang, XU Boxuan, XIE Rui, CHENG Kewen, WU Chen. Simulation Analysis of Erosion Wear Induced by Hydraulic Fracturing Fluid in Cross-pipe[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 534-541. doi: 10.13433/j.cnki.1003-8728.20200099

压裂液对四通管冲蚀磨损的仿真分析

doi: 10.13433/j.cnki.1003-8728.20200099
详细信息
    作者简介:

    钟功祥(1962−),教授,硕士生导师,研究方向为石油机械工程,13458599070,973786455@qq.com

  • 中图分类号: TG156

Simulation Analysis of Erosion Wear Induced by Hydraulic Fracturing Fluid in Cross-pipe

  • 摘要: 在页岩气压裂开采过程中,为了提高压裂效率,部分井场在地面采用一种新型的高压管汇快接装置。针对该装置中四通管处的冲蚀磨损问题,基于DPM冲蚀预测模型,利用FLUENT软件研究水力压裂下快接管汇装置的四通部位的冲蚀磨损规律。结果表明,冲蚀集中面位于相贯线及其附近的管壁上;质量流不变的情况下,随着粒度的增大,相贯线上最大冲蚀率呈指数式降低,管壁上最大冲蚀率先增大后减小;质量流不变的情况下,随着黏度的增大,最大冲蚀磨损量增大,且随着粒径的增大,其变化规律由对数型向指数型过渡。
  • 图  1  四通管模型示意图

    图  2  网格示意图

    图  3  液相流动特征云图

    图  4  x=100 mm截面流速云图

    图  5  侧流流线图

    图  6  典型截面流速云图

    图  7  监测线速度曲线图

    图  8  支撑剂颗粒运动追踪图

    图  9  漩涡区域液、固相速度对比图

    图  10  侧流液、固相流线对比图

    图  11  四通管处冲蚀磨损云图

    图  12  四通管处冲蚀磨损云图

    图  13  区域A、B最大冲蚀率拟合曲线图

    图  14  不同黏度、粒径的冲蚀率图

    表  1  区域A、B最大冲蚀率表

    颗粒粒径D/mm区域A最大冲蚀率E/(kg·m−2·s−1区域B最大冲蚀率E/(kg·m−2·s−1
    20目(0.85)1.34 × 10−32.21 × 10−4
    30目(0.6)1.81 × 10−32.86 × 10−4
    40目(0.425)1.88 × 10−33.82 × 10−3
    50目(0.3)2.22 × 10−34.44 × 10−4
    60目(0.25)2.67 × 10−34.64 × 10−4
    80目(0.18)3.44 × 10−33.54 × 10−4
    100目(0.15)3.74 × 10−33.29 × 10−4
    下载: 导出CSV
  • [1] 金雪梅, 张祥来, 廖浩, 等. 加砂压裂过程中高压管汇失效爆裂分析[J]. 安全, 2017, 38(1): 17-18 doi: 10.3969/j.issn.1002-3631.2017.01.007

    JIN X M, ZHANG X L, LIAO H, et al. Analysis of burst of high pressure manifold failure during sand fracturing[J]. Safety, 2017, 38(1): 17-18 (in Chinese) doi: 10.3969/j.issn.1002-3631.2017.01.007
    [2] 陈诚. 水力压裂工具冲蚀仿真与实验研究[D]. 青岛: 中国石油大学(华东), 2017.

    CHEN C. Simulation and experimental research on the erosion of hydraulic fracturing tool[D]. Qingdao: China University of Petroleum (East China), 2017 (in Chinese).
    [3] PEREIRA G C, DE SOUZA F J, DE MORO MARTINS D A. Numerical prediction of the erosion due to particles in elbows[J]. Powder Technology, 2014, 261: 105-117 doi: 10.1016/j.powtec.2014.04.033
    [4] JAFARI A, DEHGHANI K, BAHAADDINI K, et al. Experimental comparison of abrasive and erosive wear characteristics of four wear-resistant steels[J]. Wear, 2018, 416-417: 14-26 doi: 10.1016/j.wear.2018.09.010
    [5] 刘洪斌, 牟浩. 加砂压裂中固体支撑剂对压裂管道的冲蚀磨损研究[J]. 中国安全生产科学技术, 2018, 14(1): 87-94

    LIU H B, MU H. Study on erosion wear of fracturing pipe caused by solid proppant in sand fracturing[J]. Journal of Safety Science and Technology, 2018, 14(1): 87-94 (in Chinese)
    [6] SINGH J, KUMAR S, SINGH J P, et al. CFD modeling of erosion wear in pipe bend for the flow of bottom ash suspension[J]. Particulate Science and Technology, 2019, 37(3): 275-285 doi: 10.1080/02726351.2017.1364816
    [7] 易先中, 彭灼, 周元华, 等. 高压压裂液对JY-50压裂弯管冲蚀行为影响的数值模拟[J]. 表面技术, 2019, 48(2): 144-151

    YI X Z, PENG Z, ZHOU Y H, et al. Numerical simulation for erosion behavior of high-pressure fracturing fluids on JY-50 fracturing bend pipe[J]. Surface Technology, 2019, 48(2): 144-151 (in Chinese)
    [8] 王伟. 压裂滑套耐冲蚀试验研究[J]. 石化技术, 2019, 26(4): 70-71 doi: 10.3969/j.issn.1006-0235.2019.04.052

    WANG W. Study on anti-erosion properties of fracturing sliding sleeve[J]. Petrochemical Industry Technology, 2019, 26(4): 70-71 (in Chinese) doi: 10.3969/j.issn.1006-0235.2019.04.052
    [9] 赖晓明. 高压管汇多相流体冲蚀数值模拟研究[J]. 中国科技纵横, 2019(11): 97-98

    LAI X M. Numerical simulation of erosion of multiphase fluid in high pressure manifold[J]. China Science & Technology Overview, 2019(11): 97-98 (in Chinese)
    [10] 马国华, 于凤荣, 张思青. 三种κ-ε模型模拟混流式水轮机转轮叶片湍流场差异性比较[J]. 水电能源科学, 2014, 32(8): 148-152

    MA G H, YU F R, ZHANG S Q. Comparison of numerical simulation of hydraulic turbine with three different κ-ε models[J]. Water Resources and Power, 2014, 32(8): 148-152 (in Chinese)
    [11] FINNIE I, MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear, 1978, 48(1): 181-190 doi: 10.1016/0043-1648(78)90147-3
    [12] 张继信, 樊建春, 詹先觉, 等. 水力压裂工况下42CrMo材料冲蚀磨损特性研究[J]. 石油机械, 2012, 40(4): 100-103

    ZHANG J X, FAN J C, ZHAN X J, et al. Research on the erosion wear characteristics of 42CrMo steel in hydraulic fracture conditions[J]. China Petroleum Machinery, 2012, 40(4): 100-103 (in Chinese)
    [13] 张继信, 樊建春, 张来斌, 等. 30CrMo合金钢的冲蚀磨损性能研究[J]. 润滑与密封, 2012, 37(4): 15-18 doi: 10.3969/j.issn.0254-0150.2012.04.004

    ZHANG J X, FAN J C, ZHANG L B, et al. Experimental study on erosion wear of 30CrMo[J]. Lubrication Engineering, 2012, 37(4): 15-18 (in Chinese) doi: 10.3969/j.issn.0254-0150.2012.04.004
    [14] FORDER A, THEW M, HARRISON D. A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2): 184-193 doi: 10.1016/S0043-1648(97)00217-2
    [15] DEAN W R. Fluid motion in a curved channel[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 121(787): 402-420
    [16] CHEN X Q, PEREIRA J C F. Computation of particle dispersion in turbulent liquid flows using an efficient Lagrangian trajectory model[J]. International Journal for Numerical Methods in Fluids, 1998, 26(3): 345-364 doi: 10.1002/(SICI)1097-0363(19980215)26:3<345::AID-FLD636>3.0.CO;2-G
    [17] 赵彦琳, 杨少帅, 姚军. 304不锈钢两相流冲蚀腐蚀的实验研究[J]. 北京航空航天大学学报, 2019, 45(8): 1504-1511

    ZHAO Y L, YANG S S, YAO J. Experimental study on erosion-corrosion of 304 stainless steel under two-phase flow condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1504-1511 (in Chinese)
    [18] 过江, 张碧肖. 固-液两相流充填管道输送冲蚀磨损数值研究[J]. 科技导报, 2015, 33(11): 49-53 doi: 10.3981/j.issn.1000-7857.2015.11.008

    GUO J, ZHANG B X. Numerical investigation of impact erosion in liquid-solid two-phase flow of the backfilling pipe[J]. Science & Technology Review, 2015, 33(11): 49-53 (in Chinese) doi: 10.3981/j.issn.1000-7857.2015.11.008
    [19] 钱伟强, 任小玲. 水力压裂对油管头四通冲蚀磨损分析[J]. 石油矿场机械, 2016, 45(10): 43-48

    QIAN W Q, REN X L. Analysis of erosion-corrosion for tubing head spool during hydraulic fracturing[J]. Oil Field Equipment, 2016, 45(10): 43-48 (in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  34
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-14
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回