留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密立根法测量热膜式气体流量传感器中污染物颗粒带电量

袁昌荣 李小宁 孙中圣

袁昌荣, 李小宁, 孙中圣. 密立根法测量热膜式气体流量传感器中污染物颗粒带电量[J]. 机械科学与技术, 2021, 40(5): 775-779. doi: 10.13433/j.cnki.1003-8728.20200098
引用本文: 袁昌荣, 李小宁, 孙中圣. 密立根法测量热膜式气体流量传感器中污染物颗粒带电量[J]. 机械科学与技术, 2021, 40(5): 775-779. doi: 10.13433/j.cnki.1003-8728.20200098
YUAN Changrong, LI Xiaoning, SUN Zhongsheng. Measuring Contaminant Particle Charge in Hot Film Gas Flow Sensor with Millikan Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 775-779. doi: 10.13433/j.cnki.1003-8728.20200098
Citation: YUAN Changrong, LI Xiaoning, SUN Zhongsheng. Measuring Contaminant Particle Charge in Hot Film Gas Flow Sensor with Millikan Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 775-779. doi: 10.13433/j.cnki.1003-8728.20200098

密立根法测量热膜式气体流量传感器中污染物颗粒带电量

doi: 10.13433/j.cnki.1003-8728.20200098
基金项目: 

国家自然科学基金项目 51475242

详细信息
    作者简介:

    袁昌荣(1988-), 博士研究生, 研究方向为气动技术和传感器技术, ycr_njust@163.com

    通讯作者:

    李小宁, 教授, 博士生导师, xnli139@139.com

  • 中图分类号: TH138

Measuring Contaminant Particle Charge in Hot Film Gas Flow Sensor with Millikan Method

  • 摘要: 热膜式气体流量传感器在实际使用过程中,其芯片表面很容易被微小颗粒污染,使精度达不到工作要求。试验研究发现,传感器通电工作时,芯片表面电场力是造成污染物颗粒吸附堆积的主要因素。因此,污染物颗粒带电量的大小对芯片表面颗粒的堆积有着直接影响。文中采用Mastersizer 2000激光粒度分析仪和密立根油滴仪联合测量了颗粒群的平均粒径和平均带电量。激光粒度分析仪所测污染物颗粒的平均粒径为3.311 μm,根据此平均粒径值,密立根油滴仪所测3.2~3.4 μm范围内的颗粒所带平均带电量为6.4×10-17 C,此带电量即为整个颗粒群的平均带电量。
  • 图  1  传感器芯片表面污染物颗粒堆积形貌

    图  2  Mastersizer 2000激光粒度分析仪

    图  3  微硅粉粒径分布图谱

    图  4  密立根法测量颗粒带电量原理图

    图  5  MOD-5型密立根油滴仪实物图

    图  6  微硅粉颗粒带电量测量过程实物图

    图  7  微硅粉颗粒电荷量随粒径分布图

    图  8  平均粒径3.311(3.2~3.4)μm颗粒电荷量分布

    表  1  密立根油滴仪所测微硅粉颗粒半径及带电量

    电压UAB/V 运动时间t/s 颗粒半径rp/m 颗粒带电量qp/C
    9 70 8.076×10-7 3.745×10-18
    48 15.8 1.699×10-6 7.049×10-18
    101 41.7 1.046×10-6 7.492×10-19
    7 30.4 1.225×10-6 1.764×10-17
    112 19.8 1.518×10-6 2.136×10-18
    23 2.9 3.967×10-6 1.946×10-16
    40 18.3 1.579×10-6 6.751×10-18
    276 1.6 5.342×10-6 3.988×10-17
    38 13.9 1.812×10-6 1.083×10-17
    3 12 1.950×10-6 1.719×10-16
    40 12.1 1.942×10-6 1.273×10-17
    24 15.1 1.738×10-6 1.511×10-17
    5 9.9 2.147×10-6 1.384×10-16
    9 78.8 7.612×10-7 3.110×10-18
    4 17.2 1.629×10-6 7.425×10-17
    8 17.1 1.634×10-6 3.746×10-17
    160 1.9 4.902×10-6 5.306×10-17
    4 17.9 1.597×10-6 6.984×10-17
    200 3.1 3.837×10-6 2.023×10-17
    4 16.8 1.648×10-6 7.699×10-17
    下载: 导出CSV
  • [1] BALAKRISHNAN V, DINH T, PHAN H P, et al. Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology[J]. Sensors and Actuators A: Physical, 2018, 279: 293-305 doi: 10.1016/j.sna.2018.06.025
    [2] DINH T, PHAN H P, NGUYEN T K, et al. Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures[J]. IEEE Electron Device Letters, 2018, 39(4): 580-583 doi: 10.1109/LED.2018.2808329
    [3] GLATZL T, CERIMOVIC S, STEINER H, et al. Hot-film and calorimetric thermal air flow sensors realized with printed board technology[J]. Journal of Sensors and Sensor Systems, 2016, 5(2): 283-291 doi: 10.5194/jsss-5-283-2016
    [4] MA R H. A novel design of vehicle intake system detection based-on hot-film air flow meter sensors[J]. Journal of Engineering and Applied Sciences, 2011, 6(1): 43-48 http://www.cqvip.com/QK/72738X/20111/HS727382011001001.html
    [5] 余柏林. 应用于汽车的温差式空气流量传感器的研究[D]. 武汉: 华中科技大学, 2008

    YU B L. Study of temperature difference air flow sensor used in automobiles[D]. Wuhan: Huazhong University of Science and Technology, 2008 (in Chinese)
    [6] SEKINE S. Fault diagnosis apparatus for airflow meter: US, 9200582[P]. 2015-12-01
    [7] AHMED Q, BHATTI A I, IQBAL M. Virtual sensors for automotive engine sensors fault diagnosis in second-order sliding modes[J]. IEEE Sensors Journal, 2011, 11(9): 1832-1840 doi: 10.1109/JSEN.2011.2105471
    [8] YUAN C R, SUN Z S, LI X N. Mechanism and modeling of contaminant accumulation on hot-film air flow sensor[J]. Mathematical Problems in Engineering, 2019, 2019: 6246259
    [9] YUAN C R, SUN Z S, LI X N, et al. Experimental study of particle deposition on thermal gas flow sensor[C]//2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Nanjing: IEEE, 2016
    [10] 张宝峰, 张连洪, 李双义. 颗粒人工荷电带电量测量的研究[J]. 天津大学学报与, 2002, 35(6): 696-698 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX200206005.htm

    ZHANG B F, ZHANG L H, LI S Y. Investigation on the measurement of artificial electric charge[J]. Journal of Tianjin University, 2002, 35(6): 696-698 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX200206005.htm
    [11] 杨志奎. 粉体颗粒荷电量测量方法研究[D]. 大连: 大连理工大学, 2018

    YANG Z K. Study on the method of measuring of powder particles charge[D]. Dalian: Dalian University of Technology, 2018 (in Chinese)
    [12] 许德玄, 李祥生, 马祝阳, 等. 密立根油滴仪测量粉尘荷电量的探讨[J]. 物理实验, 1993, 13(3): 134-135, 140 https://www.cnki.com.cn/Article/CJFDTOTAL-WLSL199303020.htm

    XU D X, LI X S, MA Z Y, et al. Investigation on measuring the dust charge by Millikan oil drop meter[J]. Physical Experiment, 1993, 13(3): 134-135, 140 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLSL199303020.htm
    [13] 李潮锐. 调制场法测量纳微颗粒荷电量和粒径[J]. 中山大学学报, 2005, 44(2): 42-44 doi: 10.3321/j.issn:0529-6579.2005.02.011

    LI C R. Determination on charge and size of nano-particle with a modulared field[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(2): 42-44 (in Chinese) doi: 10.3321/j.issn:0529-6579.2005.02.011
    [14] 孟青山. 带电尘土特性及其在电场下沉积特性的研究[D]. 北京: 北京邮电大学, 2005

    MENG Q S. Study on characteristics of charged dust and its deposition characteristics under electric field[D]. Beijing: Beijing University of Posts and Telecommunica-tions, 2005 (in Chinese)
    [15] 秦大可, 于法鹏. Mastersizer2000粒径仪对SiO2粒径分析的影响因素研究[J]. 苏州大学学报, 2011, 31(1): 47-51 doi: 10.3969/j.issn.1673-047X.2011.01.011

    QIN D K, YU F P. Influencing factors on Mastersizer 2000 particle size distribution analysis of SiO2[J]. Journal of Soochow University, 2011, 31(1): 47-51 (in Chinese) doi: 10.3969/j.issn.1673-047X.2011.01.011
    [16] SOCHAN A, BIEGANOWSKI A, RYAK M, et al. Comparison of soil texture determined by two dispersion units of Mastersizer 2000[J]. International Agrophysics, 2012, 26(1): 99-102 doi: 10.2478/v10247-012-0015-9
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  25
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-21
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回