留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

减震稳扭旋冲钻井提速工具可变节流口特性分析

赵建军 赵晨熙 崔晓杰 胡群爱

赵建军,赵晨熙,崔晓杰, 等. 减震稳扭旋冲钻井提速工具可变节流口特性分析[J]. 机械科学与技术,2021,40(4):592-597 doi: 10.13433/j.cnki.1003-8728.20200083
引用本文: 赵建军,赵晨熙,崔晓杰, 等. 减震稳扭旋冲钻井提速工具可变节流口特性分析[J]. 机械科学与技术,2021,40(4):592-597 doi: 10.13433/j.cnki.1003-8728.20200083
ZHAO Jianjun, ZHAO Chenxi, CUI Xiaojie, HU Qun'ai. Characteristic Analysis of Variable Orifice of Damping Steady Torque Percussion Drilling Acceleration Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 592-597. doi: 10.13433/j.cnki.1003-8728.20200083
Citation: ZHAO Jianjun, ZHAO Chenxi, CUI Xiaojie, HU Qun'ai. Characteristic Analysis of Variable Orifice of Damping Steady Torque Percussion Drilling Acceleration Tool[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 592-597. doi: 10.13433/j.cnki.1003-8728.20200083

减震稳扭旋冲钻井提速工具可变节流口特性分析

doi: 10.13433/j.cnki.1003-8728.20200083
基金项目: 中国石化科技部攻关项目(P17050-3)
详细信息
    作者简介:

    赵建军(1986−),副研究员,博士,研究方向为钻井提速工具设计与优化,zhaojj.sripe@sinopec.com

  • 中图分类号: TG156

Characteristic Analysis of Variable Orifice of Damping Steady Torque Percussion Drilling Acceleration Tool

  • 摘要: 底部钻具组合耦合振动,不仅降低了钻头的稳定性和攻击性,还易造成钻具疲劳破坏,诱发井下事故。目前,大部分常规的辅助破岩工具只能抑制单一形式的钻具振动,针对多种振动形式耦合的复杂工况,提速效果有限。为此,提出一种减震稳扭旋冲钻井提速工具,该工具集复合冲击和减震稳扭功能于一体,可有效抑制钻头不规则振动,保证钻头平稳快速钻进。以该工具冲击能量发生单元为研究重点,建立了动静阀盘可变节流口数学模型,基于MATLAB仿真模型数值分析得到了可变节流口过流面积与节流压差之间的关系,确定了动静阀盘的几何结构参数。最后完成样机试制和地面性能测试,节流压差测试结果与仿真分析结果相符,满足现场应用需求。
  • 图  1  减震稳扭旋冲钻井提速工具总体结构图

    图  2  动静阀盘过流面积建模原理图

    图  3  动静阀盘可变节流口压力-流量特性仿真模型

    图  4  动静阀盘可变节流口面积变化曲线

    图  5  动静阀盘可变节流口压力-流量特性曲线

    图  6  冲击能量发生单元性能测试方案

    图  7  冲击能量发生机构性能测试装置

    图  8  冲击能量发生单元性能测试曲线图

    表  1  动静阀盘可变节流口几何参数

    参数名静阀盘动阀盘
    偏心孔偏心距/mm55
    偏心孔半径/mm1515
    下载: 导出CSV

    表  2  冲击能量发生单元性能试验结果

    排量/(m3·min−1)压力波动范围/MPa轴向冲击力/kN
    0.2 0.1~ 0.25 1.8
    0.5 0.2 ~ 0.45 3.5
    0.8 0.3 ~ 1.0 8.9
    1.1 0.6 ~ 2.2 17.5
    1.8 0.9 ~ 3.7 33.6
    下载: 导出CSV
  • [1] 兰凯, 张金成, 母亚军, 等. 高研磨性硬地层钻井提速技术[J]. 石油钻采工艺, 2015, 37(6): 18-22

    LAN K, ZHANG J C, MU Y J, et al. Technology for increasing drilling speed in high abrasive hard formation[J]. Oil Drilling & Production Technology, 2015, 37(6): 18-22 (in Chinese)
    [2] 祝小林, 杨灿, 张鸥, 等. 新型PDC钻头砾岩破岩技术及应用[J]. 石油机械, 2019, 47(6): 28-32

    ZHU X L, YANG C, ZHANG O, et al. Conglomerate rock breaking technology with new PDC cutter and its application[J]. China Petroleum Machinery, 2019, 47(6): 28-32 (in Chinese)
    [3] 王磊, 张仁龙, 索忠伟, 等. 适应于PDC钻头的液动射流冲击器改进及应用[J]. 石油机械, 2018, 46(12): 12-16, 23

    WANG L, ZHANG R L, SUO Z W, et al. Improvement and application of hydraulic jet impactor adapted to PDC bit[J]. China Petroleum Machinery, 2018, 46(12): 12-16, 23 (in Chinese)
    [4] 孙源秀, 邹德永, 郭玉龙, 等. 切削-犁削混合钻头设计及现场应用[J]. 石油钻采工艺, 2016, 38(1): 53-56

    SUN Y X, ZOU D Y, GUO Y L, et al. Design and field application of plow-cutting PDC bit[J]. Oil Drilling & Production Technology, 2016, 38(1): 53-56 (in Chinese)
    [5] EL-GAYAR M, ALI T S, TALAF M A. Multilevel force-balanced cutting structure layout helped solve PDC bit dullness issues resulting from geosteering in thin reservoirs[C]//Proceedings of the SPE Bergen One Day Seminar. Bergen, Norway: SPE, 2017: 1-14.
    [6] 马广军, 王甲昌, 张海平. 螺杆驱动旋冲钻井工具设计及试验研究[J]. 石油钻探技术, 2016, 44(3): 50-54

    MA G J, WANG J C, ZHANG H P. The design and experimental study of PDM driven rotary percussion drilling tool[J]. Petroleum Drilling Techniques, 2016, 44(3): 50-54 (in Chinese)
    [7] 玄令超, 管志川, 呼怀刚, 等. 弹性蓄能激发式旋冲钻井工具特性分析[J]. 石油钻探技术, 2016, 44(3): 61-66

    XUAN L C, GUAN Z C, HU H G, et al. Analysis of the characteristics of the rotary impact drilling tool with an elastic element accumulator[J]. Petroleum Drilling Techniques, 2016, 44(3): 61-66 (in Chinese)
    [8] 秦晓庆, 刘伟, 李丽, 等. 旋冲钻井技术在川西硬地层的应用[J]. 断块油气田, 2013, 20(4): 505-507

    QIN X Q, LIU W, LI L, et al. Application of rotary percussion drilling technology in hard formation of western Sichuan[J]. Fault-block Oil and Gas Field, 2013, 20(4): 505-507 (in Chinese)
    [9] 祝效华, 刘伟吉. 旋冲钻井技术的破岩及提速机理[J]. 石油学报, 2018, 39(2): 216-222 doi: 10.7623/syxb201802010

    ZHU X H, LIU W J. Rock breaking and ROP rising mechanism of rotary-percussive drilling technology[J]. Acta Petrolei Sinica, 2018, 39(2): 216-222 (in Chinese) doi: 10.7623/syxb201802010
    [10] 陈新勇, 张苏, 付潇, 等. 扭力冲击钻井工具模拟分析及现场试验[J]. 石油机械, 2018, 46(9): 29-32

    CHEN X Y, ZHANG S, FU X, et al. Simulation analysis and field test of torque impact drilling tool[J]. China Petroleum Machinery, 2018, 46(9): 29-32 (in Chinese)
    [11] 李思琪, 毕福庆, 李玮, 等. 扭转冲击钻井稳态钻进动力学特性及现场应用[J]. 中国石油大学学报, 2019, 43(2): 97-104

    LI S Q, BI F Q, LI W, et al. Dynamic characteristics of steady torsional impact drilling and its field application[J]. Journal of China University of Petroleum, 2019, 43(2): 97-104 (in Chinese)
    [12] 查春青, 柳贡慧, 李军, 等. 复合冲击钻具的研制及现场试验[J]. 石油钻探技术, 2017, 45(1): 57-61

    ZHA C Q, LIU G H, LI J, et al. Development and field application of a compound percussive jet[J]. Petroleum Drilling Techniques, 2017, 45(1): 57-61 (in Chinese)
    [13] 柳贡慧, 李玉梅, 李军, 等. 复合冲击破岩钻井新技术[J]. 石油钻探技术, 2016, 44(5): 10-15

    LIU G H, LI Y M, LI J, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10-15 (in Chinese)
    [14] 李玉梅, 张涛, 苏中, 等. 复合冲击频率配合特性模拟研究[J]. 石油机械, 2019, 47(9): 30-36

    LI Y M, ZHANG T, SU Z, et al. Simulation study on compound percussion frequency matching characteristics[J]. China Petroleum Machinery, 2019, 47(9): 30-36 (in Chinese)
    [15] 查春青, 柳贡慧, 李军, 等. 复合谐振钻井工具的研制及现场试验[J]. 石油机械, 2019, 47(5): 66-70

    ZHA C Q, LIU G H, LI J, et al. Development and field application of the compound vibration drilling tool[J]. China Petroleum Machinery, 2019, 47(5): 66-70 (in Chinese)
    [16] 张辉. PDC钻头恒扭矩工具在XING101井的应用[J]. 石油机械, 2015, 43(12): 15-18, 24

    ZHANG H. Application of PDC bit anti stick-slip tool in well XING101[J]. China Petroleum Machinery, 2015, 43(12): 15-18, 24 (in Chinese)
    [17] 刘希茂, 范春英, 高巧娟, 等. 随钻恒扭器的研制及现场应用[J]. 石油机械, 2015, 43(5): 32-35

    LIU X M, FAN C Y, GAO Q J, et al. Development and field application of drilling torque stabilizer[J]. China Petroleum Machinery, 2015, 43(5): 32-35 (in Chinese)
    [18] VOGEL SK, CREEGAN AP. Case study for real time stick/slip mitigation to improve drilling performance[C]//Proceedings of SPE/IADC Middle East Drilling Technology Conference and Exhibition. Abu Dhabi, UAE: Society of Petroleum Engineers, 2016: 1-8.
    [19] 胡群爱, 孙连忠, 张进双, 等. 硬地层稳压稳扭钻井提速技术[J]. 石油钻探技术, 2019, 47(3): 107-112 doi: 10.11911/syztjs.2019053

    HU Q A, SUN L Z, ZHANG J S, et al. Technology for drilling speed increase using stable WOB/torque for hard formations[J]. Petroleum Drilling Techniques, 2019, 47(3): 107-112 (in Chinese) doi: 10.11911/syztjs.2019053
    [20] 钟功祥, 王进, 蒋晓波. 天然气井井下定压节流阀数值模拟及结构优化[J]. 机械科学与技术, 2017, 36(11): 1666-1673

    ZHONG G X, WANG J, JIANG X B. Numerical simulation and structure optimization of a down-hole throttling valve of constant pressure for gas well[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1666-1673 (in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  30
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-23
  • 网络出版日期:  2021-04-16
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回