留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁致伸缩轴向双柱塞泵驱动作动器特性研究

宋昀泽 朱玉川

宋昀泽, 朱玉川. 磁致伸缩轴向双柱塞泵驱动作动器特性研究[J]. 机械科学与技术, 2021, 40(5): 657-662. doi: 10.13433/j.cnki.1003-8728.20200080
引用本文: 宋昀泽, 朱玉川. 磁致伸缩轴向双柱塞泵驱动作动器特性研究[J]. 机械科学与技术, 2021, 40(5): 657-662. doi: 10.13433/j.cnki.1003-8728.20200080
SONG Yunze, ZHU Yuchuan. Research on Output Characteristics of Dual Magnetostrictive Axial Plunger Pumps-based Electro-hydrostatic Actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 657-662. doi: 10.13433/j.cnki.1003-8728.20200080
Citation: SONG Yunze, ZHU Yuchuan. Research on Output Characteristics of Dual Magnetostrictive Axial Plunger Pumps-based Electro-hydrostatic Actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 657-662. doi: 10.13433/j.cnki.1003-8728.20200080

磁致伸缩轴向双柱塞泵驱动作动器特性研究

doi: 10.13433/j.cnki.1003-8728.20200080
基金项目: 

国家自然科学基金项目 51575258

国家自然科学基金项目 51975275

详细信息
    作者简介:

    宋昀泽(1994-), 硕士研究生, 研究方向为多磁致伸缩泵驱动的作动器

    通讯作者:

    朱玉川, 教授,博士生导师,meeyczhu@nuaa.edu.cn

  • 中图分类号: TH137

Research on Output Characteristics of Dual Magnetostrictive Axial Plunger Pumps-based Electro-hydrostatic Actuator

  • 摘要: 设计了一种磁致伸缩轴向双柱塞泵驱动的作动器,并提出了一种新型的主动配流阀,以双磁致伸缩泵为核心动力元件,组成电静液作动系统,实现了作动器的双向连续位移输出。通过建立作动器系统各部分的数学模型,从原理上分析作动器的输出特性。搭建实验平台测试并验证了作动器在相同转速不同相位角下的流量输出特性。通过数学模型与实验的对比,预测了在不同管路长度下作动器的输出特性变化规律。实验结果表明,在驱动频率180 Hz下,最大输出流量可达2.7 L/min。
  • 图  1  DMAEHA三维结构示意图

    图  2  主动配流阀结构示意图

    图  3  DMAEHA工作原理图

    图  4  MPP动力学模型

    图  5  单柱塞流动特性简化模型

    图  6  液压缸动力学模型

    图  7  DMAEHA系统仿真模型

    图  8  主动配流阀与MPP中活塞的位置关系

    图  9  液压缸输出位移

    图  10  DMAEHA最佳输出流量随磁致伸缩柱塞泵的工作频率变化

  • [1] WAX S G, FISCHER G M, SANDS R R. The past, present, and future of DARPA's investment strategy in smart materials[J]. JOM, 2003, 55(12): 17-23 doi: 10.1007/s11837-003-0005-2
    [2] CHAUDHURI A, WERELEY N. Compact hybrid electro-hydraulic actuators using smart materials: a review[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(6): 597-634 doi: 10.1177/1045389X11418862
    [3] 王振宇, 朱玉川. GMM执行器电磁仿真与位移输出实验研究[J]. 压电与声光, 2019, 41(2): 210-212, 216 https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201902013.htm

    WANG Z Y, ZHU Y C. Experimental study on electromagnetic simulation and displacement output of giant magnetostrictive material (GMM) actuator[J]. Piezoelectrics & Acoustooptics, 2019, 41(2): 210-212, 216 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG201902013.htm
    [4] 朱玉川, 李宇阳. 新型集成式压电作动器中的液压传动原理[J]. 液压与气动, 2018(8): 23-26 doi: 10.11832/j.issn.1000-4858.2018.08.005

    ZHU Y C, LI Y Y. Hydraulic transmission principle in new integrated piezoelectric actuator[J]. Chinese Hydraulics & Pneumatics, 2018(8): 23-26 (in Chinese) doi: 10.11832/j.issn.1000-4858.2018.08.005
    [5] LARSON J P, DAPINO M J. Reliable, high-frequency miniature valves for smart material electrohydraulic actuators[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(7): 805-813 doi: 10.1177/1045389X12438628
    [6] ZHU Y C, YANG X L, WERELEY N M. Theoretical and experimental investigations of a magnetostrictive electro-hydrostatic actuator[J]. Smart Materials and Structures, 2018, 27(10): 105043 doi: 10.1088/1361-665X/aad071
    [7] YANG X L, ZHU Y C, ZHU Y K. Characteristic investigations on magnetic field and fluid field of a giant magnetostrictive material-based electro-hydrostatic actuator[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(5): 847-860 doi: 10.1177/0954410017696108
    [8] TAN H H, HURST W, LEO D. Performance modeling of a piezohydraulic actuation system with active valves[J]. Smart Materials and Structures, 2005, 14(1): 91-110 doi: 10.1088/0964-1726/14/1/010
    [9] 费尚书. 圆柱转阀配流的磁致伸缩电静液作动器的研究[D]. 南京: 南京航空航天大学, 2017

    FEI S S. Research on magnetostrictive materials-based electro-hydrostatic actuator rectified by cylindrical rotary valve[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese)
    [10] WANG Z Y, ZHU Y C, LI R Q, et al. Development of a dual magnetostrictive material rods-based electro-hydrostatic actuator[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(13): 1871-1881 doi: 10.1177/1045389X19849247
    [11] 王传礼, 丁凡, 张凯军. 稀土超磁致伸缩转换器的动态特性仿真研究[J]. 系统仿真学报, 2003, 15(3): 379-381 doi: 10.3969/j.issn.1004-731X.2003.03.022

    WANG C L, DING F, ZHANG K J. The study on simulation of dynamic characteristic of rare-earth GMA[J]. Acta Simulata Systematica Sinica, 2003, 15(3): 379-381 (in Chinese) doi: 10.3969/j.issn.1004-731X.2003.03.022
    [12] LAU J Y, LIANG W Y, TAN K K. Enhanced robust impedance control of a constrained piezoelectric actuator-based surgical device[J]. Sensors and Actuators A: Physical, 2019, 290: 97-106 doi: 10.1016/j.sna.2019.02.015
    [13] WANG X L, ZHU Y C, CHENG Q F, et al. Simulation research on the four-nozzle flapper valve based on GMA[J]. Advanced Materials Research, 2011, 287-290: 239-244 doi: 10.4028/www.scientific.net/AMR.287-290.239
    [14] 马吉恩, 徐兵, 杨华勇. 轴向柱塞泵流动特性理论建模与试验分析[J]. 农业机械学报, 2010, 41(1): 188-194 doi: 10.3969/j.issn.1000-1298.2010.01.036

    MA J E, XU B, YANG H Y. Modelling and experiment study on fluid character of axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 188-194 (in Chinese) doi: 10.3969/j.issn.1000-1298.2010.01.036
    [15] 王振宇, 朱玉川, 李宇阳, 等. 超磁致伸缩电静液作动器输出流量影响因素分析[J]. 机械科学与技术, 2019, 38(4): 582-586 doi: 10.13433/j.cnki.1003-8728.20180212

    WANG Z Y, ZHU Y C, LI Y Y, et al. Analyzing factors of influence on performance of giant magnetostrictive electro-hydrostatic actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(4): 582-586 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180212
  • 加载中
图(10)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  74
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-26
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回