留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单个边缘微观损伤对铝合金材料蚀坑应力集中效应的影响研究

刘治国 李旭东 陈川

刘治国, 李旭东, 陈川. 单个边缘微观损伤对铝合金材料蚀坑应力集中效应的影响研究[J]. 机械科学与技术, 2021, 40(3): 456-462. doi: 10.13433/j.cnki.1003-8728.20200075
引用本文: 刘治国, 李旭东, 陈川. 单个边缘微观损伤对铝合金材料蚀坑应力集中效应的影响研究[J]. 机械科学与技术, 2021, 40(3): 456-462. doi: 10.13433/j.cnki.1003-8728.20200075
LIU Zhiguo, LI Xudong, CHEN Chuan. Influence of Single Marginal Microcosmic Damage on Concentration Effect of Corrosion Pit Stress for Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 456-462. doi: 10.13433/j.cnki.1003-8728.20200075
Citation: LIU Zhiguo, LI Xudong, CHEN Chuan. Influence of Single Marginal Microcosmic Damage on Concentration Effect of Corrosion Pit Stress for Aluminum Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 456-462. doi: 10.13433/j.cnki.1003-8728.20200075

单个边缘微观损伤对铝合金材料蚀坑应力集中效应的影响研究

doi: 10.13433/j.cnki.1003-8728.20200075
详细信息
    作者简介:

    刘治国(1976-), 副教授, 研究方向为飞机结构腐蚀疲劳寿命分析, qdnuaalzg@163.com

  • 中图分类号: TG174.3;V216.5

Influence of Single Marginal Microcosmic Damage on Concentration Effect of Corrosion Pit Stress for Aluminum Alloy

  • 摘要: 为获取边缘微观损伤对铝合金蚀坑产生的应力集中效应的影响及影响规律,采用ANSYS有限元方法,构建7B04铝合金半椭球体简化蚀坑模型、单个半椭球体包含一个边缘微观损伤的蚀坑模型,并基于线弹性断裂力学,开展两种蚀坑模型的应力集中效应计算分析。研究发现:边缘微观损伤对半椭球体蚀坑应力集中效应的数值大小、作用区域以及作用区域大小影响明显。包含与不包含边缘微观损伤的半椭球体蚀坑产生的应力集中系数最大值分别为Kt, max=3.359和Kt, max=2.24;包含边缘微观损伤的半椭球体蚀坑其应力集中效应明显的区域集中在边缘微观损伤与半椭球体蚀坑交汇位置的侧边;边缘微观损伤对点蚀损伤应力集中效应的影响与其表面尺寸、深度以及方位有关,应力集中系数随其深度与长度的比值(h/l)增加而增加,且Kt, θ=45°>Kt, θ=0
  • 图  1  蚀坑与简化模型

    图  2  1/4点蚀损伤模型有限元网格划分

    图  3  包含边缘微观损伤蚀坑形貌

    图  4  包含一个边缘微观椭球体蚀坑简化模型

    图  5  包含一个边缘微观椭球体蚀坑有限元网格划分(h/l=1、h/w=3)

    图  6  典型蚀坑形貌特征下应力分布图

    图  7  蚀坑形貌特征与应力集中系数关系

    图  8  典型蚀坑形貌特征下应力分布图(θ=0°、w=10 μm)

    图  9  典型蚀坑形貌特征下有限元网格及应力分布图(θ=45°、w=10 μm、l=15 μm、h=15 μm)

    图  10  不同微观椭球体特征形貌应力集中系数计算结果

    表  1  不同特征形貌蚀坑应力集中系数Kt计算结果(W=60 μm)

    L/W H/W
    0.1 0.2 0.4 0.8 1.0
    1 1.27 1.49 1.77 2.13 2.24
    2 1.12 1.21 1.35 1.54 1.60
    3 1.07 1.12 1.21 1.33 1.37
    4 1.05 1.08 1.15 1.23 1.26
    8 1.02 1.03 1.06 1.09 1.10
    下载: 导出CSV

    表  2  不同特征形貌蚀坑应力集中系数计算结果(θ=0, w=2 μm, l=3 μm)

    h/μm 1.5 3.0 4.5 6.0 7.5 9.0 12.0
    Kt 3.008 3.351 3.355 3.355 3.352 3.341 3.004
    下载: 导出CSV

    表  3  不同特征形貌蚀坑应力集中系数计算结果(θ=0, w=2 μm)

    h/μm l/μm Kt h/μm l/μm Kt
    5 5 2.671 15 5 2.278
    10 2.841 10 2.354
    15 2.906 15 2.368
    20 2.925 20 2.374
    下载: 导出CSV
  • [1] VAN DER WALDE K, HILLBERRY B M. Initiation and shape development of corrosion-nucleated fatigue cracking[J]. International Journal of Fatigue, 2007, 29(7): 1269-1281 doi: 10.1016/j.ijfatigue.2006.10.010
    [2] VAN DER WALDE K, HILLBERRY B M. Characterization of pitting damage and prediction of remaining fatigue life[J]. International Journal of Fatigue, 2008, 30(1): 106-118 doi: 10.1016/j.ijfatigue.2007.02.020
    [3] JONES K, HOEPPNER D W. The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminum alloy[J]. International Journal of Fatigue, 2009, 31(4): 686-692 doi: 10.1016/j.ijfatigue.2008.03.016
    [4] 刘治国, 穆志韬, 边若鹏. LD2铝合金加速腐蚀蚀坑演化的ARIMA模型研究[J]. 机械强度, 2012, 34(4): 608-614 https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201204026.htm

    LIU Z G, MU Z T, BIAN R P. Study on ARIMA model of LD2 aluminum alloy accelerated corrosion pit evolvement[J]. Journal of Mechanical Strength, 2012, 34(4): 608-614 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201204026.htm
    [5] 张川. 含腐蚀损伤金属材料剩余寿命与剩余强度研究[D]. 南京: 南京航空航天大学, 2012

    ZHANG C. Research on residual life and residual strength of metals with corrosion damage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese)
    [6] PAO P S, GILL S J, FENG C R. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy[J]. Scripta Materialia, 2000, 43(5): 391-396 doi: 10.1016/S1359-6462(00)00434-6
    [7] ARUNACHALAM S, FAWAZ S. Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy[J]. International Journal of Fatigue, 2016, 91: 50-58 doi: 10.1016/j.ijfatigue.2016.05.021
    [8] 王跃, 熊玉平, 赵霞, 等. 含裂纹铝合金板单面修补结构疲劳裂纹扩展分析[J]. 推进技术, 2018, 39(4): 865-871 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htm

    WANG Y, XIONG Y P, ZHAO X, et al. Analysis of fatigue crack propagation for repaired aluminum alloy plate containing crack with single patch[J]. Journal of Propulsion Technology, 2018, 39(4): 865-871 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htm
    [9] 刘治国, 颜光耀, 穆志韬. LC4CZ铝合金机场环境下点蚀萌生疲劳裂纹行为研究[J]. 推进技术, 2018, 39(6): 1379-1385 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201806022.htm

    LIU Z G, YAN G Y, MU Z T. Research on pitting corrosion nucleating fatigue crack behavior of LC4CZ aluminum alloys in airport environment[J]. Journal of Propulsion Technology, 2018, 39(6): 1379-1385 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201806022.htm
    [10] VAN DER WALDE K. Corrosion nucleated fatigue crack growth[D]. Silafaye: Purdue University, 2005
    [11] 黄克智, 余寿文. 弹塑性断裂力学[M]. 北京: 清华大学出版社, 1985

    HUANG K Z, YU S W. Elastic-plastic fracture mechanics[M]. Beijing: Tsinghua University Press, 1985 (in Chinese)
    [12] JONES K, HOEPPNER D W. Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Science, 2006, 48(10): 3109-3122 doi: 10.1016/j.corsci.2005.11.008
    [13] 王池权, 熊峻江, 马少俊, 等. 航空铝合金材料腐蚀裂纹扩展性能试验[J]. 北京航空航天大学学报, 2017, 43(5): 935-941 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201705011.htm

    WANG C Q, XIONG J J, MA S J, et al. Tests for corrosion crack propagation behavior of aeronautical aluminum alloys[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 935-941 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201705011.htm
    [14] YE Z Y, LIU D X, YUAN M, et al. Effects of prior corrosion with and without stress on the mechanical properties of 7475-T761 aluminum alloy[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 608-613 doi: 10.1007/s40195-015-0238-4
    [15] 朱做涛. 基于腐蚀等级的直升机铝合金动部件寿命评定技术研究[D]. 烟台: 海军航空工程学院, 2011

    ZHU Z T. Research on the life evaluation of aluminum alloy for helicopter's dynamic components based on corrosion grade[D]. Yantai: Naval Aeronautical Engineering Institute, 2011 (in Chinese)
    [16] PILKEY W D. Peterson's stress concentration factors[M]. 2nd ed. New York: John Wiley and Sons, 1997
    [17] 刘治国, 王海东, 穆志韬. 基于微观结构的航空铝合金点蚀扩展行为研究[J]. 航空工程进展, 2017, 8(2): 143-148, 189 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201702007.htm

    LIU Z G, WANG H D, MU Z T. Research of aircraft aluminum alloys pitting corrosion growth behavior based on micro-structure[J]. Advances in Aeronautical Science and Engineering, 2017, 8(2): 143-148, 189 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201702007.htm
    [18] 刘治国, 李旭东, 穆志韬. LC4铝合金服役环境下点蚀形貌特征及其演变规律[J]. 航空材料学报, 2017, 37(4): 25-32 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201704005.htm

    LIU Z G, LI X D, MU Z T. Pitting corrosion topography characteristics and evolution laws of LC4 aluminum alloy in service environment[J]. Journal of Aeronautical Materials, 2017, 37(4): 25-32 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201704005.htm
    [19] 刘治国, 王海东, 贾明明. 航空铝合金点蚀形貌对应力集中系数影响量化分析[J]. 强度与环境, 2018, 45(1): 25-31 https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201801005.htm

    LIU Z G, WANG H D, JIA M M. Quantitative influence analysis of aero aluminum alloy pitting corrosion morphology to stress concentration factor[J]. Structure & Environment Engineering, 2018, 45(1): 25-31 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201801005.htm
    [20] 刘治国, 颜光耀, 吕航. 7B04铝合金服役环境下点蚀表面损伤特征研究[J]. 环境技术, 2017, 35(5): 46-49, 64 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJJ201705014.htm

    LIU Z G, YAN G Y, LV H. Research on pitting corrosion damage characteristics of 7B04 aluminum alloys in service environment[J]. Environmental Technology, 2017, 35(5): 46-49, 64 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJJ201705014.htm
    [21] CERIT M. Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit[J]. Corrosion Science, 2013, 67: 225-232 doi: 10.1016/j.corsci.2012.10.028
    [22] HUANG Y F, WEI C, CHEN L J, et al. Quantitative correlation between geometric parameters and stress concentration of corrosion pits[J]. Engineering Failure Analysis, 2014, 44: 168-178 doi: 10.1016/j.engfailanal.2014.05.020
    [23] TURNBULL A, WRIGHT L, CROCKER L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit[J]. Corrosion Science, 2010, 52(4): 1492-1498 doi: 10.1016/j.corsci.2009.12.004
    [24] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003

    YAO W X. Fatigue life prediction of structures[M]. Beijing: National Defense Industry Press, 2003 (in Chinese)
    [25] 潘志军. 热处理对7B04高强铝合金强韧性的影响[D]. 长沙: 中南大学, 2002

    PAN Z J. Influnce of heat treatment to 7B04 aluminum alloy toughness[D]. Changsha: Central South University, 2002 (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  40
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回