留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空装配抗振外骨骼减振器参数设计

陈俞鹏 王海波 吴小笛

陈俞鹏, 王海波, 吴小笛. 航空装配抗振外骨骼减振器参数设计[J]. 机械科学与技术, 2021, 40(5): 663-669. doi: 10.13433/j.cnki.1003-8728.20200070
引用本文: 陈俞鹏, 王海波, 吴小笛. 航空装配抗振外骨骼减振器参数设计[J]. 机械科学与技术, 2021, 40(5): 663-669. doi: 10.13433/j.cnki.1003-8728.20200070
CHEN Yupeng, WANG Haibo, WU Xiaodi. Parameter Design of Shock Absorber of Anti-vibration Exoskeleton for Aerial Assembly[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 663-669. doi: 10.13433/j.cnki.1003-8728.20200070
Citation: CHEN Yupeng, WANG Haibo, WU Xiaodi. Parameter Design of Shock Absorber of Anti-vibration Exoskeleton for Aerial Assembly[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 663-669. doi: 10.13433/j.cnki.1003-8728.20200070

航空装配抗振外骨骼减振器参数设计

doi: 10.13433/j.cnki.1003-8728.20200070
基金项目: 

国家自然科学基金项目 51205329

详细信息
    作者简介:

    陈俞鹏(1996-), 硕士研究生, 研究方向为工业装配外骨骼以及上肢抗振外骨骼, cyp7211@my.swjtu.edu.cn

    通讯作者:

    王海波, 副教授, haibowang@swjtu.edu.cn

  • 中图分类号: TG156

Parameter Design of Shock Absorber of Anti-vibration Exoskeleton for Aerial Assembly

  • 摘要: 利用双直角坐标法求解抗振外骨骼辅助铆接的人机耦合力学模型,根据拉格朗日原理建立铆接工具水平方向和垂直方向的运动微分方程,得到影响抗振外骨骼减振性能的减振器参数。基于人机耦合力学模型和现有外骨骼样机参数,以标准正交表L16(45)设计5因素4水平的正交仿真试验,分析减振器参数对抗振外骨骼减振性能的影响。ADAMS仿真试验结果表明:减振器参数对水平方向力Fx和合力均值μF影响显著,而对竖直方向力Fy影响较小;减振器参数对Fx的影响显著性排序为:l1c2k1k2c1, 对μF的影响显著性排序为:l1c2k2k1c1;减振器安装位置l1FxμF的主要影响因素,试验范围内的最佳参数组合为l1(4)k1(4)k2(4)c1(4)c2(4)。试验结果确定了减振器参数对减振性能的影响,为减振器参数设计及类似的减振结构设计提供参考依据。
  • 图  1  抗振外骨骼上肢及减振器

    图  2  减振臂原理简图

    图  3  穿戴外骨骼辅助装配作业

    图  4  人机耦合系统力学模型

    图  5  人机耦合仿真模型

    图  6  仿真结果

    表  1  模型相关参数

    符号 代表的结构参数 单位
    M1M2 外骨骼云台、工具质量 kg
    M3M4 人体上臂、前臂质量 kg
    l1 减振器安装点高度 m
    l2 连杆ABEF的长度 m
    l3 铰点B, E的水平距离 m
    θ1θ2 连杆ABEF水平角度 rad
    k1k2 减振器1、2弹簧刚度 N/m
    kukvkw 肩关节刚度 N·m/rad
    c1c2 减振器1、2阻尼系数 N·m·s/rad2
    cucvcw 肩、肘、腕关节阻尼系数 N·m·s/rad2
    F0 激振力的幅值 N
    f 手臂初始作用力 N
    xy 工具水平、竖直方向位移 m
    下载: 导出CSV

    表  2  因素水平变量

    水平 l1 k1 k2 c1 c2
    1 0.04 6 000 6 000 100 100
    2 0.06 8 000 8 000 130 130
    3 0.08 10 000 10 000 160 160
    4 0.1 12 000 12 000 190 190
    下载: 导出CSV

    表  3  正交试验方案设计

    试验号 l1 k1 k2 c1 c2
    1 0.04 6 000 6 000 100 100
    2 0.04 8 000 8 000 130 130
    3 0.04 10 000 10 000 160 160
    4 0.04 12 000 12 000 190 190
    5 0.06 6 000 8 000 160 190
    6 0.06 8 000 6 000 190 160
    7 0.06 10 000 12 000 100 130
    8 0.06 12 000 10 000 130 100
    9 0.08 6 000 10 000 190 130
    10 0.08 8 000 12 000 160 100
    11 0.08 10 000 6 000 130 190
    12 0.08 12 000 8 000 100 160
    13 0.1 6 000 12 000 130 160
    14 0.1 8 000 10 000 100 190
    15 0.1 10 000 8 000 190 100
    16 0.1 12 000 6 000 160 130
    下载: 导出CSV

    表  4  仿真数据处理结果

    试验号 Fx Fy μF
    a1 θ a1 θ
    1 45.6 2.559 16.6 5.388 31.02
    2 45.4 2.623 16.7 5.372 30.91
    3 44 2.686 17.5 5.451 30.46
    4 42.8 2.733 18 5.435 29.81
    5 33.2 2.856 19.2 5.388 24.79
    6 32 2.812 17.5 5.451 24.05
    7 32 2.953 19.2 5.509 24.23
    8 38 2.953 19.2 5.498 27.76
    9 25.8 2.875 18 5.482 20.63
    10 26.5 1.178 18 5.435 21.40
    11 29.6 2.837 18 0.739 23.18
    12 31.6 2.906 18 5.513 24.52
    13 26.5 2.906 19 5.529 21.40
    14 29 2.868 20 5.513 22.94
    15 22.5 2.827 19 5.529 18.93
    16 24.5 2.827 20 5.513 20.07
    下载: 导出CSV

    表  5  各水平因素平均偏差量

    研究对象 l1 k1 k2 c1 c2
    k1 44.45 32.93 32.78 33.15 34.55
    k2 33.80 33.18 33.23 31.93 34.88
    Fx k3 28.38 34.20 32.03 33.53 32.05
    k4 25.63 31.95 34.23 33.65 30.78
    R 18.83 2.25 2.20 1.73 4.10
    k1 30.55 24.58 24.46 24.78 25.68
    k2 25.21 24.79 24.82 23.96 25.81
    μF k3 22.43 25.45 24.20 25.11 24.18
    k4 20.84 24.21 25.54 25.18 23.35
    R 9.71 1.24 1.34 1.22 2.46
    下载: 导出CSV
  • [1] 邓砚宇. 飞机装配铆接中的力学性能分析及仿真研究[D]. 南昌: 南昌航空大学, 2018

    DENG Y Y. Mechanical performance analysis and simulation research in riveting of aircraft assembly[D]. Nanchang: Nanchang Hangkong University, 2018 (in Chinese)
    [2] 杜航锋. 飞机装配中先进手持铆接工具应用浅析[J]. 电子制作, 2017(14): 31-32 doi: 10.3969/j.issn.1006-5059.2017.14.015

    DU H F. Application analysis of advanced hand riveting tools in aircraft assembly[J]. Practical Electronics, 2017(14): 31-32 (in Chinese) doi: 10.3969/j.issn.1006-5059.2017.14.015
    [3] MILOSEVIC M, MCCONVILLE K M V. Measurement of vibrations and evaluation of protective gloves for work with hand-held power tools in industrial settings[C]//2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, France: IEEE, 2007
    [4] CHERNG J G, EKSIOGLU M, KZLASLAN K. Vibration reduction of pneumatic percussive rivet tools: mechanical and ergonomic re-design approaches[J]. Applied Ergonomics, 2009, 40(2): 256-266 doi: 10.1016/j.apergo.2008.04.011
    [5] 朱隽沛, 李怀仙, 王海波, 等. 机身装配工人肌肉骨骼损伤调查和人机工效负荷水平研究[J]. 工业工程, 2018, 21(1): 89-95 doi: 10.3969/j.issn.1007-7375.e17-1260

    ZHU J P, LI H X, WANG H B, et al. A study of the ergonomic load level in the prevalence of work-related musculoskeletal disorders among the plane's fuselage assembly workers[J]. Industrial Engineering Journal, 2018, 21(1): 89-95 (in Chinese) doi: 10.3969/j.issn.1007-7375.e17-1260
    [6] 高雪松. 基于某型飞机机身装配的技术研究[D]. 沈阳: 沈阳航空航天大学, 2017

    GAO X S. Research of the fuselage assembly technology based on a certain type of aircrafe[D]. Shenyang: Shenyang Aerospace University, 2017 (in Chinese)
    [7] GRIFFIN M J. Evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration[J]. Occupational and Environmental Medicine, 1998, 55(5): 340-348 doi: 10.1136/oem.55.5.340
    [8] DONG R G, MCDOWELL T W, WELCOME D E, et al. Correlations between biodynamic characteristics of human hand-arm system and the isolation effectiveness of anti-vibration gloves[J]. International Journal of Industrial Ergonomics, 2005, 35(3): 205-216 doi: 10.1016/j.ergon.2004.08.009
    [9] JING X J, ZHANG L L, FENG X, et al. A novel bio-inspired anti-vibration structure for operating hand-held jackhammers[J]. Mechanical Systems and Signal Processing, 2019, 118: 317-339 doi: 10.1016/j.ymssp.2018.09.004
    [10] NAIK P, UNDE J, DAREKAR B, et al. Lower body passive exoskeleton using control enabled two way ratchet[C]//2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). Bangalore, India: IEEE, 2018
    [11] 范曙远, 王海波, 吴小笛, 等. 工业装配外骨骼机械臂承重性能研究[J]. 工程设计学报, 2018, 25(6): 697-702 doi: 10.3785/j.issn.1006-754X.2018.06.011

    FAN S Y, WANG H B, WU X D, et al. Research on load-bearing performance of industrial assembly exoskeleton manipulator[J]. Chinese Journal of Engineering Design, 2018, 25(6): 697-702 (in Chinese) doi: 10.3785/j.issn.1006-754X.2018.06.011
    [12] HEITMANN S, FERNS N, BREAKSPEAR M. Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb[J]. Frontiers in Neurorobotics, 2012, 5: 5
    [13] ZONNINO A, SERGI F. Model-based analysis of the stiffness of the wrist joint in active and passive conditions[J]. Journal of Biomechanical Engineering, 2019, 141(4): 041006 doi: 10.1115/1.4042684
    [14] ZHANG L Q, PORTLAND G H, WANG G Z, et al. Stiffness, viscosity, and upper-limb inertia about the glenohumeral abduction axis[J]. Journal of Orthopaedic Research, 2000, 18(1): 94-100 doi: 10.1002/jor.1100180114
    [15] PANDO A L, LEE H, DRAKE W B, et al. Position-dependent characterization of passive wrist stiffness[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(8): 2235-2244 doi: 10.1109/TBME.2014.2313532
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  66
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-20
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回