留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道纳米结构的润湿接触状态对滑移减阻影响的分子动力学研究

施鹏程 卢艳

施鹏程,卢艳. 微通道纳米结构的润湿接触状态对滑移减阻影响的分子动力学研究[J]. 机械科学与技术,2021,40(2):313-320 doi: 10.13433/j.cnki.1003-8728.20200055
引用本文: 施鹏程,卢艳. 微通道纳米结构的润湿接触状态对滑移减阻影响的分子动力学研究[J]. 机械科学与技术,2021,40(2):313-320 doi: 10.13433/j.cnki.1003-8728.20200055
SHI Pengcheng, LU Yan. Molecular Dynamics Study on Influence of Wetting Contact State of Microchannel Nanostructures on Sliding Drag Reduction[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 313-320. doi: 10.13433/j.cnki.1003-8728.20200055
Citation: SHI Pengcheng, LU Yan. Molecular Dynamics Study on Influence of Wetting Contact State of Microchannel Nanostructures on Sliding Drag Reduction[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 313-320. doi: 10.13433/j.cnki.1003-8728.20200055

微通道纳米结构的润湿接触状态对滑移减阻影响的分子动力学研究

doi: 10.13433/j.cnki.1003-8728.20200055
基金项目: 国家自然科学基金项目(51875417)
详细信息
    作者简介:

    施鹏程(1996−),硕士研究生,研究方向为摩擦学理论,201703704130@wust.edu.cn

    通讯作者:

    卢艳,副教授,博士,yanlu@wust.edu.cn

  • 中图分类号: TH117

Molecular Dynamics Study on Influence of Wetting Contact State of Microchannel Nanostructures on Sliding Drag Reduction

  • 摘要: 针对流体在纳米通道的微尺度流效应,采用分子动力学方法以SPC/E水分子为纳米流动介质,分别计算模拟其在不同纳米结构的微通道内的润湿接触状态和Poiseuille流动行为,研究通过微通道壁面微纳结构改变而导致的不同润湿状态起到的滑移减阻效应。结果表明:纳米结构的周期性增加,会使得壁面的亲疏水性呈现马太效应,从而达到润湿性控制的目的。增加壁面亲水性,会使主流区密度、流体速度和滑移速度都减小;在增加壁面疏水性的过程中,主流区的密度增加;并且流体的状态由Wenzel向Cassie转变,流体速度和滑移长度先减小后增加;而亲疏水转变过程中,随着表征接触角的增加,当动静态流体与壁面的接触状态相同时,流体流动的壁面摩擦因数值呈现单调递减趋势;而当动静态流体与壁面的接触状态存在差异时,摩擦因数会出现轻度无规律波动。
  • 图  1  微通道滑移减阻模型

    图  2  实验与仿真的验证

    图  3  液滴在不同织构周期壁面的润湿性模拟结果

    图  4  微通道内流体分子分布

    图  5  不同锥形微织构周期时流体数密度分布

    图  6  亲水壁面周期T=2时速度分布

    图  7  不同微织构周期壁面速度分布

    图  8  速度滑移分布

    图  9  不同润湿性的微通道中的摩擦因数μ和滑移长度Ls

    图  10  微通道润湿性转变时的摩擦因数μ

    表  1  各原子之间的LJ势能参数

    参数数值
    εO-O/(kcal·mol−1) 0.155 35
    εCu-O(q)/(kcal·mol−1) 0.788 41
    εCu-O(s)/(kcal·mol−1) 0.192 37
    σO-O 3.166
    σCu-Cu 2.34
    σCu-O 2.753
    下载: 导出CSV

    表  2  不同织构周期的壁面参数和表征接触角

    Tθ0 = 78.9°θ0 = 102°
    rθW/(°)rfθW/(°)
    2 1.112 77.6 r = 1.112 103.4
    4 1.224 76.4 r = 1.224 104.7
    6 1.337 75.1 f = 0.122 151.3
    8 1.449 73.8 f = 0.113 155.5
    10 1.561 72.5 f = 0.08 159.5
    下载: 导出CSV
  • [1] JOSEPH P, TABELING P. Direct measurement of the apparent slip length[J]. Physical Review E, 2005, 71(3): 035303 doi: 10.1103/PhysRevE.71.035303
    [2] BOUZIGUES C I, TABELING P. Particle image analysis: a new tool for the exploration of nanofluidic flows[J]. 1st French-Chinese Symposium on Microfluidics. Beijing, 2007: 45-46
    [3] JING D L, BHUSHAN B. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: a review[J]. Journal of Colloid and Interface Science, 2015, 454: 152-179 doi: 10.1016/j.jcis.2015.05.015
    [4] GUO L, CHEN S Y, ROBBINS M O. Slip boundary conditions over curved surfaces[J]. Physical Review E, 2016, 93(1): 013105 doi: 10.1103/PhysRevE.93.013105
    [5] PIT R, HERVET H, LEGER L. Direct experimental evidence of slip in hexadecane: solid interfaces[J]. Physical Review Letters, 2000, 85(5): 980-983 doi: 10.1103/PhysRevLett.85.980
    [6] LAUGA E, BRENNER M P, STONE H A. Microfluidics: the no-slip boundary condition[M]//Tropea C, Yarin A L, Foss J F. Springer Handbook of Experimental Fluid Mechanics. Berlin: Springer, 2007: 1219-1240.
    [7] NAGAYAMA G, CHENG P. Effects of interface wettability on microscale flow by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2004, 47(3): 501-513 doi: 10.1016/j.ijheatmasstransfer.2003.07.013
    [8] SENDNER C, HORINEK D, BOCQUET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion[J]. Langmuir, 2009, 25(18): 10768-10781 doi: 10.1021/la901314b
    [9] PARK H, PARK H, KIM J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11): 110815 doi: 10.1063/1.4819144
    [10] TEO C J, KHOO B C. Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature[J]. Microfluidics and Nanofluidics, 2010, 9(2-3): 499-511 doi: 10.1007/s10404-010-0566-7
    [11] LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 176 doi: 10.1007/s00348-016-2264-z
    [12] DAS A, BHAUMIK S K. Fabrication of cylindrical superhydrophobic microchannels by replicating lotus leaf structures on internal walls[J]. Journal of Micromechanics and Microengineering, 2018, 28(4): 045011 doi: 10.1088/1361-6439/aaab36
    [13] JEFFS K, MAYNES D, WEBB B W. Prediction of turbulent channel flow with superhydrophobic walls consisting of micro-ribs and cavities oriented parallel to the flow direction[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 786-796 doi: 10.1016/j.ijheatmasstransfer.2009.09.033
    [14] HU H B, WEN J, BAO L Y, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288 doi: 10.1126/sciadv.1603288
    [15] MARTELL M B, ROTHSTEIN J P, PEROT J B. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation[J]. Physics of Fluids, 2010, 22(6): 065102 doi: 10.1063/1.3432514
    [16] MARTELL M B, PEROT J B, ROTHSTEIN J P. Direct numerical simulations of turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2009, 620: 31-41 doi: 10.1017/S0022112008004916
    [17] LUM K, CHANDLER D, WEEKS J D. Hydrophobicity at small and large length scales[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4570-4577 doi: 10.1021/jp984327m
    [18] OU J, PEROT B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12): 4635-4643 doi: 10.1063/1.1812011
    [19] DILIP D, VIJAY KUMAR S, BOBJI M S, et al. Sustained drag reduction and thermo-hydraulic performance enhancement in textured hydrophobic microchannels[J]. International Journal of Heat and Mass Transfer, 2018, 119: 551-563 doi: 10.1016/j.ijheatmasstransfer.2017.11.093
    [20] ALJALLIS E, SARSHAR M A, DATLA R, et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids, 2013, 25(2): 025103 doi: 10.1063/1.4791602
    [21] JAGDISH B N, BRANDON T Z X, KWEE T J, et al. Experimental study of air layer sustainability for frictional drag reduction[J]. Journal of Ship Research, 2014, 58(1): 30-42 doi: 10.5957/JOSR.58.1.130045
    [22] GAO P, FENG J J. Enhanced slip on a patterned substrate due to depinning of contact line[J]. Physics of Fluids, 2009, 21(10): 102102 doi: 10.1063/1.3254253
    [23] REN W W, CHEN Y, MU X J, et al. Heat transfer enhancement and drag reduction in transverse groove-bounded microchannels with offset[J]. International Journal of Thermal Sciences, 2018, 130: 240-255 doi: 10.1016/j.ijthermalsci.2018.04.025
    [24] 李春曦, 张硕, 叶学民. 界面曲率对超疏水微通道减阻的影响[J]. 系统仿真学报, 2018, 30(6): 2405-2413

    LI C X, ZHANG S, YE X M. Effect of interfacial curvature on drag reduction of superhydrophobic microchannels[J]. Journal of System Simulation, 2018, 30(6): 2405-2413 (in Chinese)
    [25] 成中军, 杜明, 来华, 等. 氨气腐蚀法制备黏附性能可控的超疏水铜表面[J]. 高等学校化学学报, 2013, 34(3): 606-609 doi: 10.7503/cjcu20120764

    CHENG Z J, DU M, LAI H, et al. Super-hydrophobic copper surface with controlled adhesion prepared via ammonia corrosion[J]. Chemical Journal of Chinese Uuiversities, 2013, 34(3): 606-609 (in Chinese) doi: 10.7503/cjcu20120764
    [26] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6296-6271
    [27] NOSÉ S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 1984, 52(2): 255-268 doi: 10.1080/00268978400101201
    [28] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994 doi: 10.1021/ie50320a024
    [29] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551 doi: 10.1039/tf9444000546
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  101
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回