留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负刚度结构的座椅悬架优化及隔振分析

时培成 李云龙 肖平 李静

时培成,李云龙,肖平, 等. 负刚度结构的座椅悬架优化及隔振分析[J]. 机械科学与技术,2021,40(2):172-180 doi: 10.13433/j.cnki.1003-8728.20200054
引用本文: 时培成,李云龙,肖平, 等. 负刚度结构的座椅悬架优化及隔振分析[J]. 机械科学与技术,2021,40(2):172-180 doi: 10.13433/j.cnki.1003-8728.20200054
SHI Peicheng, LI Yunlong, XIAO Ping, LI Jing. Optimization and Vibration Isolation Analysis of Vehicle Seat Suspension with Negative Stiffness Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 172-180. doi: 10.13433/j.cnki.1003-8728.20200054
Citation: SHI Peicheng, LI Yunlong, XIAO Ping, LI Jing. Optimization and Vibration Isolation Analysis of Vehicle Seat Suspension with Negative Stiffness Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 172-180. doi: 10.13433/j.cnki.1003-8728.20200054

负刚度结构的座椅悬架优化及隔振分析

doi: 10.13433/j.cnki.1003-8728.20200054
基金项目: 国家自然科学基金项目(51575001,51605003)、安徽高校科研平台创新团队建设项目(2016-2018)与安徽工程大学中青年拔尖人才项目(2016BJRC010)
详细信息
    作者简介:

    时培成(1976−),教授,博士,研究方向为机械/汽车振动控制技术、汽车轻量化设计,shipeicheng@126.com

  • 中图分类号: TB535; O322

Optimization and Vibration Isolation Analysis of Vehicle Seat Suspension with Negative Stiffness Structure

  • 摘要: 为进一步提升车辆座椅悬架的隔振性能,利用连杆弹簧负刚度结构与正刚度弹性元件并联的方式,设计了一种具有准零刚度的座椅悬架系统。基于多目标参数协调优化原理,进行了结构参数优化,获得了使座椅悬架刚度动刚度趋于准零刚度的最佳值。通过对座椅悬架隔振系统的动力学响应分析,以及仿真实验,验证了座椅悬架隔振系统优化的有效性。研究结果表明,采用连杆弹簧负刚度结构的座椅悬架系统能有效提升座椅的隔振效果,并可降低系统本身的固有频率,实现低频和超低频隔振。
  • 图  1  连杆弹簧负刚度机构

    图  2  负刚度机构无量纲力${\hat F_h}$-垂向位移$\hat y$曲线

    图  3  负刚度调节机构无量纲刚度${\hat K_h}$-垂向位移$\hat y$曲线

    图  4  基于负刚度结构的座椅悬架机构图

    图  5  并联后无量纲刚力-位移特性曲线图

    图  6  并联后无量纲刚度-位移特性曲线图

    图  7  优化后座椅悬架无量纲刚度、无量纲力与无量纲位移$\hat y$特性曲线(k = 0.415, β1 = 1, β2 = 1.8)

    图  8  “座椅-车”三自由度模型

    图  9  被隔振物体m1的加速度响应及对应的快速傅里叶变换(1 Hz、2 Hz)

    图  10  不同路面激励频率下被隔振物体m1加速度均方根值

    图  11  脉冲路面激励函数

    图  12  被隔振物体m1运动响应曲线

    图  13  多频率组合路面激

    图  14  多频率组合激励被隔振物体m1运动响应曲线

    图  15  随机激励位移随时间变化曲线

    图  16  随机激励下隔振物体m1运动响应曲线

    图  17  隔振物体m1加速度功率谱密度

    表  1  “座椅-车”三自由度参数定义[14]

    参数数值
    座椅负载质量m1/kg 60
    悬架质量m2/kg 300
    轮胎质量m0/kg 35
    座椅阻尼c1/(Ns·m−1) 150
    悬架阻尼c2/(Ns·m−1) 980
    座椅悬架垂向刚度Kv/(N·m−1) 12000
    车辆悬架刚度k2/(N·m−1) 16000
    轮胎刚度k0/(N·m−1) 160000
    下载: 导出CSV
  • [1] ALABUZHEV P, GRITCHIN A, KIM L, et al. Vibration protecting and measuring systems with quasi-zero stiffness[M]. New York: Hemisphere Publishing, 1989
    [2] PLATUS D L. Negative-stiffness-mechanism vibration isolation systems[C]//Proceedings Volume 3786, Optomechanical Engineering and Vibration Control. Denver, CO, United States: SPIE, 1999: 98-105
    [3] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3-5): 678-689 doi: 10.1016/j.jsv.2006.10.011
    [4] 徐道临, 张月英, 周加喜, 等. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击, 2014, 33(11): 208-213

    XU D L, ZHANG Y Y, ZHOU J X, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J]. Journal of Vibration and Shock, 2014, 33(11): 208-213 (in Chinese)
    [5] 白晓辉, 白鸿柏, 郝慧荣, 等. 正负刚度并联机构动力学分析及隔振仿真[J]. 机械工程师, 2009,(11): 87-89

    BAI X H, BAI H B, HAO H R, et al. The dynamic analysis and simulation of positive and negative stiffness in parallel[J]. Mechanical Engineer, 2009,(11): 87-89 (in Chinese)
    [6] LE T D, NGUYEN V A D. Low frequency vibration isolator with adjustable configurative parameter[J]. International Journal of Mechanical Sciences, 2017, 134: 224-233 doi: 10.1016/j.ijmecsci.2017.09.050
    [7] LE T D, AHN K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound and Vibration, 2011, 330(26): 6311-6335 doi: 10.1016/j.jsv.2011.07.039
    [8] 王勇, 李舜酩, 程春. 基于准零刚度隔振器的车-座椅-人耦合模型动态特性研究[J]. 振动与冲击, 2016, 35(15): 190-196

    WANG Y, LI S M, CHENG C. Dynamic characteristics of a vehicle seat human coupled model with quasi zero stiffness isolators[J]. Journal of Vibration and Shock, 2016, 35(15): 190-196 (in Chinese)
    [9] PALOMARES E, NIETO A J, MORALES A L, et al. Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system[J]. Journal of Sound and Vibration, 2018, 414: 31-42 doi: 10.1016/j.jsv.2017.11.006
    [10] LI Y L, XU D L. Vibration attenuation of high dimensional quasi-zero stiffness floating raft system[J]. International Journal of Mechanical Sciences, 2017, 126: 186-195 doi: 10.1016/j.ijmecsci.2017.03.029
    [11] 纪晗, 熊世树, 袁涌, 等. 基于负刚度原理的结构减震效果理论分析[J]. 振动与冲击, 2010, 29(3): 91-94 doi: 10.3969/j.issn.1000-3835.2010.03.022

    JI H, XIONG S S, YU Y, et al. Influence analysis of the structural seismic reduction effect based on negative stiffness principle[J]. Journal of Vibration and Shock, 2010, 29(3): 91-94 (in Chinese) doi: 10.3969/j.issn.1000-3835.2010.03.022
    [12] 谢张军, 张志非, 徐中明, 等. 面向人体振动响应的ISD悬架座椅性能分析[J]. 振动与冲击, 2018, 37(14): 180-187

    XIE Z J, ZHANG Z F, XU Z M, et al. Performance analysis on ISD suspension seat based on human vibration response[J]. Journal of Vibration and Shock, 2018, 37(14): 180-187 (in Chinese)
    [13] 李伟平, 肖娟, 窦现东, 等. 基于不确定性的车架单循环多目标优化[J]. 机械科学与技术, 2015, 34(6): 919-924

    LI W P, XIAO J, DOU X D, et al. Uncertainty multi-objective optimization of frame based on interval method[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(6): 919-924 (in Chinese)
    [14] 白先旭, 程伟, 徐时旭, 等. 坐姿人体四自由度动力学模型研究−集中参数模型及其在汽车乘坐舒适性研究中的应用[J]. 工程设计学报, 2017, 24(6): 638-647 doi: 10.3785/j.issn.1006-754X.2017.06.005

    BAI S X, CHENG W, XU S X, et al. Research on 4-degree-of-freedom dynamics model of seated human: lumped-parameter model and its application to ride comfort research for automobiles[J]. Chinese Journal of Engineering Design, 2017, 24(6): 638-647 (in Chinese) doi: 10.3785/j.issn.1006-754X.2017.06.005
    [15] QIU Y, GRIFFIN M J. Modelling the fore-and-aft apparent mass of the human body and the transmissibility of seat backrests[J]. Vehicle System Dynamics, 2011, 49(5): 703-722 doi: 10.1080/00423111003695594
    [16] 国家标准局.GB/T 7031−1986 车辆振动输入路面平度表示方法[S]. 北京: 中国标准出版社, 1986

    National Bureau of Standards. GB/T 7031−1986 Vehicle vibration; describing method for road surface irregularity[S]. Beijing: China Standard Press, 1986(in Chinese)
    [17] 王亚, 陈思忠, 郑凯峰. 时空相关路面不平度时域模型仿真研究[J]. 振动与冲击, 2013, 32(5): 70-74 doi: 10.3969/j.issn.1000-3835.2013.05.015

    WANG Y, CHEN S Z, ZHENG K F. Simulation research on time domain model of road roughness with time-space correlation[J]. Journal of Vibration and Shock, 2013, 32(5): 70-74 (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.05.015
    [18] 卢凡, 陈思忠. 汽车路面激励的时域建模与仿真[J]. 汽车工程, 2015, 37(5): 549-553

    LU F, CHEN S Z. Modeling and simulation of road surface excitation on vehicle in time domain[J]. Automotive Engineering, 2015, 37(5): 549-553 (in Chinese)
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  132
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回