留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四轮驱动电动汽车动力系统研究

薛奇成 张欣 崔宇轩

薛奇成,张欣,崔宇轩. 四轮驱动电动汽车动力系统研究[J]. 机械科学与技术,2021,40(2):287-295 doi: 10.13433/j.cnki.1003-8728.20200045
引用本文: 薛奇成,张欣,崔宇轩. 四轮驱动电动汽车动力系统研究[J]. 机械科学与技术,2021,40(2):287-295 doi: 10.13433/j.cnki.1003-8728.20200045
XUE Qicheng, ZHANG Xin, CUI Yuxuan. Summary on Powertrain System of Pure Electric Vehicle with Four-wheel Drive[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 287-295. doi: 10.13433/j.cnki.1003-8728.20200045
Citation: XUE Qicheng, ZHANG Xin, CUI Yuxuan. Summary on Powertrain System of Pure Electric Vehicle with Four-wheel Drive[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 287-295. doi: 10.13433/j.cnki.1003-8728.20200045

四轮驱动电动汽车动力系统研究

doi: 10.13433/j.cnki.1003-8728.20200045
基金项目: 国家重点研发计划(2017YFB0103203)
详细信息
    作者简介:

    薛奇成(1991−),博士研究生,研究方向为新能源汽车动力系统能量优化管理及动态协调控制技术,17116356@bjtu.edu.cn

    通讯作者:

    张欣,教授,博士生导师,zhangxin@bjtu.edu.cn

  • 中图分类号: TG156

Summary on Powertrain System of Pure Electric Vehicle with Four-wheel Drive

  • 摘要: 四轮驱动纯电动汽车将四轮驱动方式良好的车辆通过性和动力性与新能源汽车的环保性相结合,有利于提高新能源电动汽车的动力性和整车控制技术。本文从纯电动汽车动力系统的结构布置形式和转矩传递方式等方面入手,对四轮驱动纯电动汽车不同类型动力系统的结构形式、工作特性和研究热点等方面进行综述分析研究。研究结果表明,分布式四轮驱动系统在结构布置、控制精度和工作效率等方面具有更多的优势和潜力。其中,智能分配转矩技术和四轮轮毂电机驱动技术将成为分布式四轮驱动系统的研究热点和发展趋势。
  • 图  1  单电机四轮驱动系统

    图  2  双电机双轴四轮驱动系统

    图  3  三电机四轮驱动系统

    图  4  四轮轮边电机驱动系统

    图  5  四轮轮毂电机驱动系统

    图  6  内置悬置系统电动轮结构原理图[52]

    表  1  电动汽车常用动力电池性能对比

    名称铅酸电池锂电池镍氢电池
    比能量/(W·h·kg−1) 30~50 100~200 40~90
    比功率/(W·kg−1) 200~400 300~500 400~500
    循环寿命/次 ≥1000 ≥2000 ≥1000
    效率/% >45 >85 约70
    特点 价格低、技术成熟;
    比能量低、质量大。
    单体电压高、比能量高;成本高。 可靠性强、充放电性能好;
    原材料稀缺。
    应用 常用于景区旅游观光车 电动汽车最具前景的动力电池[29] 混合动力汽车大多选用镍氢电池
    下载: 导出CSV
  • [1] CHEN C M, ZHANG J, LIU P, et al. Analysis on the influencing factors of driving mileage of electric vehicles: a case study of taxis in Beijing[C]// Proceedings of 2017 2nd International Conference on Applied Mechanics, Electronics and Mechatronics Engineering. Beijing: Science and Engineering Research Center, 2017: 7.
    [2] ISHIKAWA Y. Design of an electric vehicle propulsion control system considering the electric vehicle characteristics[M]. Orlando, USA: EVS-14, 1997.
    [3] NAM K, FUJIMOTO H, HORI Y. Lateral stability control of in-wheel-motor-driven electric Vehicles based on sideslip angle estimation using lateral tire force sensors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(5): 1972-1985 doi: 10.1109/TVT.2012.2191627
    [4] 陈中书. 纯电动四驱汽车结构设计与性能分析[D]. 合肥: 安徽农业大学, 2016.

    CHEN Z S. Structure design and performance analysis of electric four-wheel drive vehicle[D]. Hefei: Anhui Agricultural University, 2016 (in Chinese).
    [5] ZHAI L, SUN T M, WANG J. Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4726-4739 doi: 10.1109/TVT.2016.2526663
    [6] 孙悦超. 电动汽车驱动方式及未来发展[J]. 电机与控制应用, 2016, 43(11): 98-102 doi: 10.3969/j.issn.1673-6540.2016.11.020

    SUN Y C. Electric vehicle driving mode and future development[J]. Electric Machines & Control Application, 2016, 43(11): 98-102 (in Chinese) doi: 10.3969/j.issn.1673-6540.2016.11.020
    [7] REZVANIZANIANI S M, LIU Z C, CHEN Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256: 110-124 doi: 10.1016/j.jpowsour.2014.01.085
    [8] 于德亮, 任玉龙, 刘冬, 等. 纯电动汽车的再生制动力分配策略研究[J]. 机械科学与技术, 2019, 38(2): 292-297

    YU D L, REN Y L, LIU D, et al. Study on regenerative braking force distribution strategy for pure electric vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2): 292-297 (in Chinese)
    [9] WU J L, LIANG J J Y, RUAN J G, et al. Efficiency comparison of electric vehicles powertrains with dual motor and single motor input[J]. Mechanism and Machine Theory, 2018, 128: 569-585 doi: 10.1016/j.mechmachtheory.2018.07.003
    [10] MUTOH N, KATO T, MURAKAMI K. Front-and-rear-wheel-independent-drive-type electric vehicle (FRID EV) taking the lead for next generation ECO-vehicles[C]. SAE Paper, 2011
    [11] TESLA. Electric all-wheel drive[EB/OL]. [2016-07-01]. https://www.tesla.com/models
    [12] 孙大许, 兰凤崇, 何幸福, 等. 双电机四轮驱动电动汽车自适应驱动防滑控制的研究[J]. 汽车工程, 2016, 38(5): 600-608, 619 doi: 10.3969/j.issn.1000-680X.2016.05.013

    SUN D X, LAN F C, HE X F, et al. Study on adaptive acceleration slip regulation for dual-motor four-wheel drive electric vehicle[J]. Automotive Engineering, 2016, 38(5): 600-608, 619 (in Chinese) doi: 10.3969/j.issn.1000-680X.2016.05.013
    [13] MUTOH N, MIYAJI R, YAMAGUCHI T. Outstanding running performance of front-and-rear-wheel-independent-drive-type electric vehicle (FRID EV) under various transient running conditions[C]// Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society. Montreal, QC, Canada: IEEE, 2012: 2971-2976.
    [14] MUTOH N, TAKAYANAGI T, MURAI S, et al. Cornering control method for front-and-rear-wheel-independent-drive-type electric vehicle (FRID EV) on roads with low friction coefficients[C]//Proceedings of 2012 IEEE Vehicle Power and Propulsion Conference. Seoul, South Korea: IEEE, 2012: 1143-1148.
    [15] DE NOVELLIS L, SORNIOTTI A, GRUBER P. Wheel torque distribution criteria for electric vehicles with torque-vectoring differentials[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1593-1602 doi: 10.1109/TVT.2013.2289371
    [16] 陶虹君. 双电机四轮驱动电动汽车驱动力控制研究[D]. 重庆: 重庆大学, 2017.

    TAO H J. Study on traction control of front and rear wheel independent drive type electric vehicle[D]. Chongqing: Chongqing University, 2017 (in Chinese).
    [17] MUTOH N. Driving and braking torque distribution methods for front-and rear-wheel-independent drive-type electric vehicles on roads with low friction coefficient[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3919-3933 doi: 10.1109/TIE.2012.2186772
    [18] MUTOH N, HAYANO Y, YAHAGI H, et al. Electric braking control methods for electric vehicles with independently driven front and rear wheels[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1168-1176 doi: 10.1109/TIE.2007.892731
    [19] KANG J Y, YOO J, YI K. Driving control algorithm for maneuverability, lateral stability, and rollover prevention of 4WD electric vehicles with independently driven front and rear wheels[J]. IEEE Transactions on Vehicular Technology, 2011, 60(7): 2987-3001 doi: 10.1109/TVT.2011.2155105
    [20] 孙宾宾, 高松, 王鹏伟, 等. 基于电机损耗机理的双电机四轮驱动电动车转矩分配策略的研究[J]. 汽车工程, 2017, 39(4): 386-393, 406

    SUN B B, GAO S, WANG P W, et al. A research on torque distribution strategy for dual-motor four-wheel-drive electric vehicle based on motor loss mechanism[J]. Automotive Engineering, 2017, 39(4): 386-393, 406 (in Chinese)
    [21] WANG D, WANG B. Research on driving force optimal distribution and fuzzy decision control system for a dual-motor electric vehicle[C]//Proceedings of 2015 34th Chinese Control Conference. Hangzhou: IEEE, 2015: 8146-8153.
    [22] SHI B B, SONG G, ZHE W, et al. Parameters design and economy study of an electric vehicle with powertrain systems in front and rear axle[J]. International Journal of Engineering Transactions A: Basics, 2016, 29(4): 454-463
    [23] YUAN X B, WANG J B. Torque distribution strategy for a front-and rear-wheel-driven electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3365-3374 doi: 10.1109/TVT.2012.2213282
    [24] 杨胜兵, 宋鹏飞, 毛冲冲. 新型双电机分时独立驱动的纯电动汽车仿真分析[J]. 武汉理工大学学报, 2016, 40(4): 651-656

    YANG S B, SONG P F, MAO C C. Simulation analysis of new time-sharing independent double motor drive electric vehicle[J]. Journal of Wuhan University of Technology, 2016, 40(4): 651-656 (in Chinese)
    [25] KAMACHI M, WALTERS K. A research of direct yaw-moment control on slippery road for in-wheel motor vehicle[C]//Proceedings of the 22st International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition. Yokohama, 2006: 2122-2133
    [26] 许世维. 前轴双电机后轴单电机(DFSRM)四驱电动汽车驱制动控制策略及模拟试验台开发研究[D]. 西安: 长安大学, 2017.

    XU S W. Research on driving & braking control strategy and test bench development for dual front motor and single rear motor 4-wheel-drive electric vehicle[D]. Xi′an: Chang′an University, 2017 (in Chinese).
    [27] XU S W, TANG Z Q, HE Y L, et al. Regenerative braking control strategy of electric truck based on braking security[M]//Balas V E, Jain L C, Zhao X M. Information Technology and Intelligent Transportation Systems. Cham: Springer, 2017: 263-273.
    [28] YANG Y P, SHIH Y C, CHEN J M. Real-time torque-distribution strategy for a pure electric vehicle with multiple traction motors by particle swarm optimisation[J]. IET Electrical Systems in Transportation, 2016, 6(2): 76-87 doi: 10.1049/iet-est.2014.0050
    [29] FOTOUHI A, AUGER D J, PROPP K, et al. A review on electric vehicle battery modelling: from Lithium-ion toward Lithium-Sulphur[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 1008-1021 doi: 10.1016/j.rser.2015.12.009
    [30] CALLEGARI M, GABRIELLI A, PALPACELLI M C. Cornering stability and dynamic analysis of a four steering wheels vehicle driven by" in wheel" engines[M]. Ceccarelli M. Proceedings of EUCOMES 08. Dordrecht: Springer, 2009: 313-320.
    [31] ANDERSON M, HARTY D. Unsprung mass with in-wheel motors-myths and realities[C]//Proceedings of the 10th International Symposium on Advanced Vehicle Control. Loughborough, 2010: 261-266
    [32] BROOKE L. Protean Electric tackles the unsprung-mass' myth' of in-wheel motors[J]. Automotive Engineering International, 2011, 3(119): 50-52
    [33] FU C Y, HOSEINNEZHAD R, JAZAR R, et al. Electronic differential design for vehicle side-slip control[C]//Proceedings of 2012 International Conference on Control, Automation and Information Sciences. Ho Chi Minh City, Vietnam: IEEE, 2012: 306-310.
    [34] CORDEIRO A, FOITO D, GUERREIRO M. A sensolrless speed control system for an electric vehicle without mechanical differential gear[C]//Proceedings of 2006 IEEE Mediterranean Electrotechnical Conference. Malaga, Spain: IEEE, 2006: 1174-1177.
    [35] TABBACHE B, KHELOUI A, HANINI N. An electric differential system for a two-wheel mobile plat-form using direct torque control with adaptive flux and speed observers[C]//Proceedings of 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia, Italy: IEEE, 2008: 550-556.
    [36] PEREZ-PINAL F J, CERVANTES I, EMADI A. Stability of an electric differential for traction applications[J]. IEEE Transactions on Vehicular Technology, 2009, 58(7): 3224-3232 doi: 10.1109/TVT.2009.2013473
    [37] 张昕, 王松涛, 张欣, 等. 轮边驱动电动车的转矩协调控制方法[J]. 北京交通大学学报, 2017, 41(1): 121-129 doi: 10.11860/j.issn.1673-0291.2017.01.019

    ZHANG X, WANG S T, ZHANG X, et al. Torque coordination control strategy of in-wheel drive electric vehicle[J]. Journal of Beijing Jiaotong University, 2017, 41(1): 121-129 (in Chinese) doi: 10.11860/j.issn.1673-0291.2017.01.019
    [38] 熊璐, 余卓平, 姜炜, 等. 基于纵向力分配的轮边驱动电动汽车稳定性控制[J]. 同济大学学报, 2010, 38(3): 417-421, 426

    XIONG L, YU Z P, JIANG W, et al. Research on vehicle stability control of 4WD electric vehicle based on longitudinal force control allocation[J]. Journal of Tongji University, 2010, 38(3): 417-421, 426 (in Chinese)
    [39] KO S, KO J, LEE S, et al. Development of a vehicle stability control algorithm using velocity and yaw rate for an in-wheel drive vehicle[C]//Proceedings of 2012 IEEE Vehicle Power and Propulsion Conference. Seoul, South Korea: IEEE, 2012: 24-27.
    [40] 于维一, 郑松林, 冯金芝, 等. 电动车轮边减速器轴系载荷谱设计原理的研究[J]. 汽车工程, 2018, 40(1): 98-106

    YU W Y, ZHENG S L, FENG J Z, et al. A study on the design principle of load spectra for the shafting parts in wheel hub reducer of electric vehicle[J]. Automotive Engineering, 2018, 40(1): 98-106 (in Chinese)
    [41] 龚贤武, 唐自强, 赵轩, 等. 轮边电机驱动型电动汽车动力系统参数优化设计[J]. 合肥工业大学学报, 2017, 40(1): 24-30

    GONG X W, TANG Z Q, ZHAO X, et al. Optimization design of powertrain parameter for in-wheel motor driven electric vehicles[J]. Journal of Hefei University of Technology, 2017, 40(1): 24-30 (in Chinese)
    [42] 何维聪, 丁炜琦, 苏武, 等. 基于有限元的某轮边电机驱动桥结构优化设计[J]. 汽车实用技术, 2017(10): 23-24, 28

    HE W C, DING W Q, SU W, et al. Structural opt imization design of an electric drive axle based on finite element method[J]. Automobile Applied Technology, 2017(10): 23-24, 28 (in Chinese)
    [43] 卢丽娟. 电动车轮边减速器的优化设计及性能分析[D]. 太原: 太原科技大学, 2015.

    LU L J. Optimal design and performance analysis of electric wheel side reducer[D]. Taiyuan: Taiyuan University of Science & Technology, 2015 (in Chinese)
    [44] 孙泽昌, 曾英捷, 戴海峰. 分布驱动式电动汽车电池系统分布形态对能耗特性影响的研究[J]. 汽车工程, 2015, 37(9): 1059-1064, 1070 doi: 10.3969/j.issn.1000-680X.2015.09.013

    SUN Z C, ZENG Y J, DAI H F. A study on the effects of distribution pattern of battery system on the energy consumption characteristics of distributed drive EV[J]. Automotive Engineering, 2015, 37(9): 1059-1064, 1070 (in Chinese) doi: 10.3969/j.issn.1000-680X.2015.09.013
    [45] JALALI K, UCHIDA T, MCPHEE J, et al. Development of a fuzzy slip control system for electric vehicles with in-wheel motors[J]. SAE International Journal of Alternative Powertrains, 2012, 1(1): 46-64 doi: 10.4271/2012-01-0248
    [46] WU F K, YEH T J, HUANG C F. Motor control and torque coordination of an electric vehicle actuated by two in-wheel motors[J]. Mechatronics, 2013, 23(1): 46-60 doi: 10.1016/j.mechatronics.2012.10.008
    [47] CHEN Q P, YANG X L. Calculation analysis of thermal loss and temperature field of in-wheel motor in micro-electric vehicle[J]. Journal of Mechanical Science and Technology, 2014, 28(8): 3189-3195 doi: 10.1007/s12206-014-0728-8
    [48] SHIMIZU H, HARADA J, CHAN L, et al. Development of a high performance electric vehicle[C]//Proceedings of the 22nd International Conference on Industrial Electronics, Control, and Instrumentation. Taipei, China: IEEE, 1996: 14-19.
    [49] YANG Y P, LUN Y P, CHENG C H. Design and control of axial-flux brushless DC wheel motors for electric vehicles-part I: multiobjective optimal design and analysis[J]. IEEE Transactions on Magnetics, 2004, 40(4): 1873-1882 doi: 10.1109/TMAG.2004.828164
    [50] HREDZAK B, GAIR S, EASTHAM J F. Control of an EV drive with reduced unsprung mass[J]. IEE Proceedings - Electric Power Applications, 1998, 145(6): 600-606 doi: 10.1049/ip-epa:19982012
    [51] 赵艳娥, 张建武, 韩旭. 轮毂电机独立驱动电动汽车动力减振机构设计与研究[J]. 机械科学与技术, 2008, 27(3): 395-398, 404 doi: 10.3321/j.issn:1003-8728.2008.03.027

    ZHAO Y E, ZHANG J W, HAN X. Design and study on the dynamic-damper mechanism for an in-wheel motor individual drive electric vehicle[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(3): 395-398, 404 (in Chinese) doi: 10.3321/j.issn:1003-8728.2008.03.027
    [52] 罗玉涛, 谭迪. 一种带新型内置悬置系统的电动轮结构研究[J]. 汽车工程, 2013, 35(12): 1105-1110 doi: 10.3969/j.issn.1000-680X.2013.12.010

    LUO Y T, TAN D. A research on the hub-motor driven wheel structure with a novel built-in mounting system[J]. Automotive Engineering, 2013, 35(12): 1105-1110 (in Chinese) doi: 10.3969/j.issn.1000-680X.2013.12.010
    [53] PRABHU S, CHANDRASEKAR V, KARTHIKEYAN P, et al. Vibration and thermal analysis of switched reluctance hub motor[J]. European Journal of Scientific Research, 2012, 68(1): 12-20
    [54] 左曙光, 段向雷, 吴旭东. 电动轮刚性环耦合特性模型建模与分析[J]. 同济大学学报, 2014, 42(10): 1578-1585 doi: 10.11908/j.issn.0253-374x.2014.10.019

    ZUO S G, DUAN X L, WU X D. Modeling and analysis of rigid ring coupling model of electric wheel[J]. Journal of Tongji University, 2014, 42(10): 1578-1585 (in Chinese) doi: 10.11908/j.issn.0253-374x.2014.10.019
    [55] TAN D, WANG Q. Modeling and simulation of the vibration characteristics of the in-wheel motor driving vehicle based on bond graph[J]. Shock and Vibration, 2016, 2016: 1982390
    [56] 靳彪. 轮毂电机驱动电动汽车状态参数观测及转矩分配策略研究[D]. 北京: 北京交通大学, 2016.

    JIN B. Study on state observation and torque distribution strategy of hub-motor-in-wheels driving electric vehicle[D]. Beijing: Beijing Jiaotong University, 2016 (in Chinese).
    [57] 靳彪, 张欣, 彭之川, 等. 四轮轮毂电机驱动电动汽车建模与仿真[J]. 中国公路学报, 2016, 29(4): 138-144 doi: 10.3969/j.issn.1001-7372.2016.04.017

    JIN B, ZHANG X, PENG Z C, et al. Four hub-motor-in-wheels drive electric vehicle modeling and simulation[J]. China Journal of Highway and Transport, 2016, 29(4): 138-144 (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.04.017
    [58] LOVATT H C, RAMSDEN V S, MECROW B C. Design of an in-wheel motor for a solar-powered electric vehicle[J]. IEE Proceedings-Electric Power Applications, 1998, 145(5): 402-408
    [59] 王晓远, 高鹏, 赵玉双. 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6): 53-59 doi: 10.3969/j.issn.1000-6753.2015.06.007

    WANG X Y, GAO P, ZHAO Y S. Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 53-59 (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.06.007
    [60] 马英, 邓兆祥, 谢丹. 轮毂电机悬架构型分析与优化[J]. 中南大学学报, 2014, 45(9): 3008-3014

    MA Y, DENG Z X, XIE D. Analysis and optimization of in-wheel motor suspension configuration[J]. Journal of Central South University, 2014, 45(9): 3008-3014 (in Chinese)
    [61] KAWASHIMA R, KANEMOTO T. Automotive wheel with cooling fan for brake system and in-wheel motor[J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1687-1692 doi: 10.1007/s12206-013-0417-z
    [62] 黄清声. 基于轮毂电机的纯电动城市客车动力系统匹配研究[D]. 西安: 长安大学, 2019.

    HUANG Q S. Study on power system matching of pure electric city bus based on in-wheel motor[D]. Xi′ an: Chang′ an University, 2019 (in Chinese).
    [63] 谢博臻, 朱绍鹏, 李俊杰, 等. 四驱电动汽车再生制动力控制策略研究[J]. 机电工程, 2018, 35(1): 83-88 doi: 10.3969/j.issn.1001-4551.2018.01.016

    XIE B Z, ZHU S P, LI J J, et al. Control strategy on regenerative braking force of four-wheel-drive electric vehicle[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(1): 83-88 (in Chinese) doi: 10.3969/j.issn.1001-4551.2018.01.016
    [64] 刘月娟. 电动汽车轮毂电机设计与驱动控制策略研究[D]. 上海: 中国石油大学(华东), 2017.

    LIU Y J. Research of in-wheel motor design and driving control strategy for electric vehicle[D]. Shanghai: China University of Petroleum (East China), 2017 (in Chinese).
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  128
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-28
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回