留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生扑翼机构的运动精度影响因素研究

张博利 刘光泽 刘新杰 张威

张博利,刘光泽,刘新杰, 等. 仿生扑翼机构的运动精度影响因素研究[J]. 机械科学与技术,2021,40(2):321-328 doi: 10.13433/j.cnki.1003-8728.20200043
引用本文: 张博利,刘光泽,刘新杰, 等. 仿生扑翼机构的运动精度影响因素研究[J]. 机械科学与技术,2021,40(2):321-328 doi: 10.13433/j.cnki.1003-8728.20200043
ZHANG Boli, LIU Guangze, LIU Xinjie, ZHANG Wei. Influence Factors Research on Motion Accuracy of Bionic Flapping Wing Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 321-328. doi: 10.13433/j.cnki.1003-8728.20200043
Citation: ZHANG Boli, LIU Guangze, LIU Xinjie, ZHANG Wei. Influence Factors Research on Motion Accuracy of Bionic Flapping Wing Mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 321-328. doi: 10.13433/j.cnki.1003-8728.20200043

仿生扑翼机构的运动精度影响因素研究

doi: 10.13433/j.cnki.1003-8728.20200043
基金项目: 国家自然基金委中国民航局联合基金项目(U2033208)与国家自然科学基金青年项目(12002367)
详细信息
    作者简介:

    张博利(1980−),实验师,工程硕士,研究方向为机械电工程,blzhang@cauc.edu.cn

    通讯作者:

    张威,教授,硕士生导师,weizhang@cauc.edu.cn

  • 中图分类号: TG156

Influence Factors Research on Motion Accuracy of Bionic Flapping Wing Mechanism

  • 摘要: 本文对“Sparrow” MAV(Micro air vehicle)模型进行了分析。该模型的曲柄滑块传动机构,可紧凑地实现转动和移动之间运动形式的转换,因而在扑翼飞行器的应用中占有重要地位。机构各构件的尺寸误差和变形直接影响着扑翼机构的运动精度,进而影响机构的驱动转矩。针对机构中各构件的尺寸误差和变形对运动精度的影响,进行了理论分析、仿真比较且完成了实验验证。研究发现,曲柄的尺寸误差是影响扑翼机构运动精度的最重要参数。曲柄尺寸误差对驱动转矩影响最大达到79.66%。连杆不仅是影响扑翼机构运动精度的最重要变形件,也对翅翼扑动角的影响最大(达到6.88%),会影响翅翼的气动效率。
  • 图  1  “Sparrow”模型扑翼机构

    图  2  机构尺度影响系数变化曲线

    图  3  曲柄等长度误差比较曲线

    图  4  连杆等长度误差比较曲线

    图  5  偏心距等长度误差比较曲线

    图  6  曲柄等百分比误差比较曲线

    图  7  连杆等百分比误差比较曲线

    图  8  曲柄滑块传动实验平台

    图  9  曲柄尺寸误差转矩变化比较曲线

    图  10  连杆尺寸误差转矩比较曲线

    图  11  滑块位移变化曲线

    图  12  翅翼扑动角变化曲线

    图  13  翅翼气动升力变化曲线

    表  1  曲柄等长度误差转矩变化比较

    曲柄长度R/mm转矩 /
    (N·mm)
    转矩变化/
    (N·mm)
    变化百分比/
    %
    11.0 177.365 5 78.643 8 79.66
    10.5 128.682 6 29.960 9 30.35
    10.0 98.721 7
    9.5 89.614 8 9.106 9 9.22
    9.0 83.653 9 15.067 8 15.26
    下载: 导出CSV

    表  2  连杆等长度误差转矩变化比较

    连杆长度
    L/mm
    转矩/
    (N·mm)
    转矩变化/
    (N·mm)
    变化百分比/
    %
    41.097.628 01.09371.10
    40.598.168 20.55350.56
    40.098.721 7
    39.599.289 10.56740.57
    39.099.870 91.14921.16
    下载: 导出CSV

    表  3  偏心距等长度误差转矩变化比较

    偏心距长度E/mm转矩/
    (N·mm)
    转矩变化/
    (N·mm)
    变化百分比/
    %
    −1.099.96691.24521.26
    −0.598.92050.19880.20
    098.7217
    0.599.34840.62670.63
    1.0100.83192.102 02.14
    下载: 导出CSV

    表  4  曲柄等百分比误差转矩变化比较

    曲柄长度
    R/mm
    转矩/
    (N·mm)
    转矩变化/
    (N·mm)
    变化百分比/
    %
    12 932.1295 833.4078 844.20
    11 177.3655 78.6438 79.66
    10 98.7217
    9 83.6539 15.0678 15.26
    8 72.0075 26.7142 27.06
    下载: 导出CSV

    表  5  连杆等百分比误差转矩变化比较

    连杆长度
    L/mm
    转矩/
    (N·mm)
    转矩变化/
    (N·mm)
    变化百分比/
    %
    48 94.1159 4.6058 4.67
    44 96.8687 1.8530 1.88
    40 98.7217
    36 103.7000 4.9783 5.04
    32 106.6302 7.9085 8.01
    下载: 导出CSV

    表  6  曲柄尺寸误差转矩变化比较

    曲柄长度
    R/mm
    转矩/
    (N·m)
    转矩变化/
    (N·m)
    变化百分比/
    %
    47.5 1.98
    52.5 2.05 0.07 3.54
    57.5 2.10 0.05 2.44
    下载: 导出CSV

    表  7  连杆尺寸误差转矩变化比较

    连杆长度
    L/mm
    转矩/
    (N·m)
    转矩变化/
    (N·m)
    变化百分比/
    %
    170 2.10
    185 2.27 0.17 8.09
    200 2.36 0.09 3.96
    下载: 导出CSV
  • [1] ASHELY S. Palm-size spy planes[J]. Mechanical Engineering, 1998, 120(2): 74-78 doi: 10.1115/1.1998-FEB-3
    [2] HELBLING E F, WOOD R J. A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles[J]. Applied Mechanics Reviews, 2018, 70(1): 010801 doi: 10.1115/1.4038795
    [3] 董维中. 微型扑翼飞行器的分析与控制[D]. 沈阳: 中国科学院沈阳自动化研究所, 2017

    DONG W Z. Analysis and control of flapping-wing micro air vehicle[D]. Shenyang: Shenyang Institute of Automation, Chinese Academy of Sciences, 2017 (in Chinese)
    [4] YAFENG Z, BIFENG S, YIZHE Z. Development of flapping wing micro air vehicle[C]//Proceedings of the 26th International Congress of the Aeronautical Sciences. Alaska, USA: Curran Associates, Inc., 2008: 14-19
    [5] SITTI M. Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 26-36 doi: 10.1109/TMECH.2003.809126
    [6] COLOZZA A, MICHELSON R, DALBELLO T, et al. Planetary exploration using biomimetics: an entomopter for flight on mars[R]. Cleveland, Ohio: OAI, 2002
    [7] PORNSIN-SIRIRAK T N, LEE S W, NASSEF H, et al. MEMS wing technology for a battery-powered ornithopter[C]//Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems. Miyazaki, Japan: IEEE, 2000: 799-804
    [8] YANG L J, ESAKKI B, CHANDRASEKHAR U, et al. Practical flapping mechanisms for 20 cm-span micro air vehicles[J]. International Journal of Micro Air Vehicles, 2015, 7(2): 181-202 doi: 10.1260/1756-8293.7.2.181
    [9] KARÁSEK M, NAN Y H, ROMANESCU I, et al. Pitch moment generation and measurement in a robotic hummingbird[J]. International Journal of Micro Air Vehicles, 2013, 5(4): 299-309 doi: 10.1260/1756-8293.5.4.299
    [10] JONES K D, PLATZER M F. Flapping-wing propulsion for a micro air vehicle[C]//Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2000
    [11] 刘岚, 方宗德, 侯宇, 等. 微扑翼飞行器的尺度律研究与仿生设计[J]. 中国机械工程, 2005, 16(18): 1613-1617 doi: 10.3321/j.issn:1004-132X.2005.18.005

    LIU L, FANG Z D, HOU Y, et al. Bionic design and scaling laws for flapping-wing MAVs[J]. China Mechanical Engineering, 2005, 16(18): 1613-1617 (in Chinese) doi: 10.3321/j.issn:1004-132X.2005.18.005
    [12] 黄鸣阳, 肖天航, 昂海松. 多段柔性变体扑翼飞行器设计[J]. 航空动力学报, 2016, 31(8): 1838-1844

    HUANG M Y, XIAO T H, ANG H S. Design of an ornithopter with multisection flexible morphing wings[J]. Journal of Aerospace Power, 2016, 31(8): 1838-1844 (in Chinese)
    [13] 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报, 2016, 37(1): 69-80

    ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 69-80 (in Chinese)
    [14] 叶以楠, 张卫平. 基于OpenCV的微型扑翼飞行器视觉伺服系统[J]. 计算机与现代化, 2015(4): 90-93 doi: 10.3969/j.issn.1006-2475.2015.04.019

    YE Y N, ZHANG W P. A visual servo system of FMAV based on OpenCV[J]. Computer and Modernization, 2015(4): 90-93 (in Chinese) doi: 10.3969/j.issn.1006-2475.2015.04.019
    [15] 张伟, 张卫平, 柯希俊, 等. 扑翼微飞行器紫外激光加工技术[J]. 半导体光电, 2015, 36(4): 657-660, 666

    ZHANG W, ZHANG W P, KE X J, et al. UV laser processing technology of flapping-wing microair vehicles[J]. Semiconductor Optoelectronics, 2015, 36(4): 657-660, 666 (in Chinese)
    [16] 邓如应, 艾志伟, 武永超, 等. 仿鸟扑翼飞行机器人执行机构优化设计的研究[J]. 机械设计与制造, 2015(10): 157-160 doi: 10.3969/j.issn.1001-3997.2015.10.041

    DENG R Y, AI Z W, WU Y C, et al. Actuator optimization design research of bird-imitation flapping aero-craft[J]. Machinery Design & Manufacture, 2015(10): 157-160 (in Chinese) doi: 10.3969/j.issn.1001-3997.2015.10.041
    [17] 车林仙, 易建, 杜力, 等. 单曲柄双摇杆扑翼机构多目标优化设计[J]. 机械设计, 2017, 34(9): 91-96

    CHE L X, YI J, DU L, et al. Multi-objective optimal design of flapping-wing mechanism formed by a single-crank and double-rockers linkage[J]. Journal of Machine Design, 2017, 34(9): 91-96 (in Chinese)
    [18] PETER L, WANG J, MCCARTHY M. Design of a flapping wing mechanism to coordinate both wing swing and wing pitch[J]. Journal of Mechanisms and Robotics, 2018, 10(2): 025003 doi: 10.1115/1.4038979
    [19] 张威, 胡超, 赵新华, 等. 两侧不对称单曲柄-双摇杆机构的同步性研究[J]. 机械设计, 2018, 35(5): 60-64

    ZHANG W, HU C, ZHAO X H, et al. Research on synchronization of bilateral asymmetric single crank double rocker mechanism[J]. Journal of Machine Design, 2018, 35(5): 60-64 (in Chinese)
    [20] 张威, 刘光泽, 张博利. 扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究[J]. 航空学报, 2018, 39(9): 421966-421979

    ZHANG W, LIU G Z, ZHANG B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism[J]. Acta Aeronautica et Astronautic Sinica, 2018, 39(9): 421966-421979 (in Chinese)
    [21] 屠凯, 侯宇, 华兆敏, 等. 柔性空间扑翼机构的刚柔耦合动力特性分析[J]. 机械设计与制造, 2019(7): 215-219 doi: 10.3969/j.issn.1001-3997.2019.07.053

    TU K, HOU Y, HUA Z M, et al. Dynamic analysis of rigid-flexible coupling mechanism of flexible space flapping-wing mechanism[J]. Machinery Design & Manufacture, 2019(7): 215-219 (in Chinese) doi: 10.3969/j.issn.1001-3997.2019.07.053
    [22] 谢鹏, 姜洪利, 周超英. 一种仿生扑翼飞行器的设计及动力学分析[J]. 航空动力学报, 2018, 33(3): 703-710

    XIE P, JIANG H L, ZHOU C Y. Design and dynamic analysis of a flapping wing air vehicle[J]. Journal of Aerospace Power, 2018, 33(3): 703-710 (in Chinese)
    [23] 张锐, 周超英, 汪超, 等. 蜻蜓非对称扑动时的气动特性[J]. 航空学报, 2017, 38(12): 121389

    ZHANG R, ZHOU C Y, WANG C, et al. Aerodynamic characteristics of dragonfly in asymmetric flapping[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 121389 (in Chinese)
    [24] LEE N, LEE S, CHO H, et al. Effect of flexibility on flapping wing characteristics in hover and forward flight[J]. Computers & Fluids, 2018, 173: 111-117
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  84
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-27
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回