留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热源影响下的涂层板滑动接触问题研究

向金兰 刘娟 沈火明

向金兰,刘娟,沈火明. 热源影响下的涂层板滑动接触问题研究[J]. 机械科学与技术,2021,40(2):165-171 doi: 10.13433/j.cnki.1003-8728.20200040
引用本文: 向金兰,刘娟,沈火明. 热源影响下的涂层板滑动接触问题研究[J]. 机械科学与技术,2021,40(2):165-171 doi: 10.13433/j.cnki.1003-8728.20200040
XIANG Jinlan, LIU Juan, SHEN Huoming. Study on Sliding Contact Problem of Coated Plate Considering Heat Source[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 165-171. doi: 10.13433/j.cnki.1003-8728.20200040
Citation: XIANG Jinlan, LIU Juan, SHEN Huoming. Study on Sliding Contact Problem of Coated Plate Considering Heat Source[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 165-171. doi: 10.13433/j.cnki.1003-8728.20200040

热源影响下的涂层板滑动接触问题研究

doi: 10.13433/j.cnki.1003-8728.20200040
基金项目: 国家自然科学青年基金项目(11502218)
详细信息
    作者简介:

    向金兰(1995−),硕士研究生,研究方向为接触力学,1143615442@qq.com

    通讯作者:

    刘娟,讲师,硕士生导师,博士,liujuan_616@foxmail.com

  • 中图分类号: TH117.1

Study on Sliding Contact Problem of Coated Plate Considering Heat Source

  • 摘要: 基于离散卷积快速傅里叶变换(DC-FFT),推导了三维热弹性涂层压头-涂层板接触问题的频率响应函数的半解析解,应用数值模拟方法验证了半解析解的正确性,进而探讨涂层压头及涂层板的接触应力与涂层厚度h之间的关系。结果表明:三维热弹性域下涂层厚度与表面接触压力表现为负增长趋势,随着涂层厚度增加,表面接触压力呈现先快后慢的下降规律,涂层与基体弹性模量与接触压力之间呈现一次线性递增关系,表面接触压力增加速率与涂层厚度有较大关系,涂层与基体之间泊松比、热源Q对接触压力也具有较大程度的影响。
  • 图  1  环绕顺序(wrap-around)展开

    图  2  计算区域扩充

    图  3  涂层压头-涂层板接触模型

    图  4  涂层厚度h与表面接触压力关系验证

    图  5  涂层厚度与表面压力最大值关系

    图  6  涂层厚度与涂层杨氏模量比值关系

    图  7  杨氏模量比值与表面压力P的关系

    图  8  泊松比比值与接触压力曲线关系

    图  9  热源Q影响下的涂层表面接触压力

    表  1  材料参数列表

    序号名称数值
    1 外载荷W 1500 N
    2 基体杨氏模量 E1_s 210 GPa
    3 涂层杨氏模量E1 2.1 GPa
    4 基体导热系数K1_s 60.0 W/(m·K)
    5 涂层导热系数K1 4.19 W/(m·K)
    6 基体泊松比 μ1_s 0.3
    7 涂层泊松比 μ1 0.2
    8 基体热膨胀系数α1_s 2.0×10−5
    9 涂层热膨胀系数α1 5.0×10−6
    10 基体热扩散系数β1_s 1.523×10−5
    11 涂层热扩散系数β1 3.28×10−6
    下载: 导出CSV
  • [1] HE D Q, LI X, PU J B, et al. Improving the mechanical and tribological properties of TiB2/a-C nanomultilayers by structural optimization[J]. Ceramics International, 2018, 44(3): 3356-3363 doi: 10.1016/j.ceramint.2017.11.125
    [2] LAKKARAJU R K, BOBARU F, ROHDE S L. Optimization of multilayer wear-resistant thin films using finite element analysis on stiff and compliant substrates[J]. Journal of Vacuum Science & Technology A, 2006, 24(1): 146-155
    [3] KANG J J, XU B S, WANG H D, et al. Competing failure mechanism and life prediction of plasma sprayed composite ceramic coating in rolling-sliding contact condition[J]. Tribology International, 2014, 73: 128-137.
    [4] SUTRADHAR A, PAULINO G H. The simple boundary element method for transient heat conduction in functionally graded materials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(42-44): 4511-4539 doi: 10.1016/j.cma.2004.02.018
    [5] KANG J J, XU B S, WANG H D, et al. Competing failure mechanism and life prediction of plasma sprayed composite ceramic coating in rolling-sliding contact condition[J]. Tribology International, 2014, 73: 128-137 doi: 10.1016/j.triboint.2014.01.014
    [6] YU C J, WANG Z J, WANG Q J. Analytical frequency response functions for contact of multilayered materials[J]. Mechanics of Materials, 2014, 76: 102-120 doi: 10.1016/j.mechmat.2014.06.006
    [7] WANG T J, WANG L Q, GU L, et al. Stress analysis of elastic coated solids in point contact[J]. Tribology International, 2015, 86: 52-61 doi: 10.1016/j.triboint.2015.01.013
    [8] CAI S B, BHUSHAN B. A numerical three-dimensional contact model for rough, multilayered elastic/plastic solid surfaces[J]. Wear, 2005, 259(7-12): 1408-1423 doi: 10.1016/j.wear.2005.02.014
    [9] LIU J, KE L L, WANG Y S. Two-dimensional thermoelastic contact problem of functionally graded materials involving frictional heating[J]. International Journal of Solids and Structures, 2011, 48(10): 2536-2548
    [10] LIU S B, LANNOU S, WANG Q, et al. Solutions for temperature rise in stationary/moving bodies caused by surface heating with surface convection[J]. Journal of Heat Transfer, 2004, 126(5): 776-785 doi: 10.1115/1.1795234
    [11] KUL′ CHYTS′ KYI-ZHYHAILO R, Bajkowski A. Elastic coating with inhomogeneous interlayer under the action of normal and tangential forces[J]. Materials Science, 2014, 49(5): 650-659 doi: 10.1007/s11003-014-9659-x
    [12] LIU S B, WANG Q, LIU G. A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses[J]. Wear, 2000, 243(1-2): 101-111 doi: 10.1016/S0043-1648(00)00427-0
    [13] POLONSKY I A, KEER L M. A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques[J]. Wear, 1999, 231(2): 206-219 doi: 10.1016/S0043-1648(99)00113-1
    [14] ZHANG S G, WANG W Z, ZHAO Z Q. The effect of surface roughness characteristics on the elastic-plastic contact performance[J]. Tribology International, 2014, 79: 59-73 doi: 10.1016/j.triboint.2014.05.016
    [15] ZHANG H B, WANG W Z, ZHANG S G, et al. Semi-analytical solution of three-dimensional steady state thermoelastic contact problem of multilayered material under friction heating[J]. International Journal of Thermal Sciences, 2018, 127: 384-399 doi: 10.1016/j.ijthermalsci.2018.02.006
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  69
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-25
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回