留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度学习在机器人加工颤振辨识中的应用

王桃章 王宇 王宇斐 张明锴

王桃章,王宇,王宇斐, 等. 深度学习在机器人加工颤振辨识中的应用[J]. 机械科学与技术,2021,40(2):188-192 doi: 10.13433/j.cnki.1003-8728.20200036
引用本文: 王桃章,王宇,王宇斐, 等. 深度学习在机器人加工颤振辨识中的应用[J]. 机械科学与技术,2021,40(2):188-192 doi: 10.13433/j.cnki.1003-8728.20200036
WANG Taozhang, WANG Yu, WANG Yufei, ZHANG Mingkai. Application of Deep Learning in Robot Milling Chattering Identification[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 188-192. doi: 10.13433/j.cnki.1003-8728.20200036
Citation: WANG Taozhang, WANG Yu, WANG Yufei, ZHANG Mingkai. Application of Deep Learning in Robot Milling Chattering Identification[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 188-192. doi: 10.13433/j.cnki.1003-8728.20200036

深度学习在机器人加工颤振辨识中的应用

doi: 10.13433/j.cnki.1003-8728.20200036
基金项目: 国家重点研发计划项目(2018YFB1308200)
详细信息
    作者简介:

    王桃章(1986−),硕士,研究方向为机器视觉,机器人加工,wangtaozhang7@163.com

  • 中图分类号: TH16

Application of Deep Learning in Robot Milling Chattering Identification

  • 摘要: 工业机器人在大型复杂零件的加工中被广泛应用,由其低刚度引发颤振问题是目前学者研究的重要领域之一。本文针对机器人铣削颤振辨识问题,使用变分模态分解-连续小波变换(VMD-CWT)方法对加工过程中产生的振动信号进行处理,构建去噪时频谱图表征机器人颤振状态并作为辨识模型的输入。使用深度残差卷积网络模型对其进行辨识,并通过确定连续小波变换的分解尺度和引入输入归一化,提升模型的收敛速度和预测精度。优化后模型的预测精度可达到95.28%。实现了离线状态下,对时频谱图的颤振状态辨识。
  • 图  1  卷积神经网络的基本计算流程

    图  2  基于ResNet卷积网络的时频谱图分类

    图  3  不同分解层数下的时频谱图

    图  4  VMD去噪前后时频谱图

    图  5  基于深度学习的颤振辨识算法流程图

    图  6  稳定状态下机器人铣削颤振辨识实验结果

    图  7  过渡状态下机器人铣削颤振辨识实验结果

    图  8  颤振状态下机器人铣削颤振辨识实验结果

  • [1] LI X, YAO Z H, CHEN Z C. An effective EMD-based feature extraction method for boring chatter recognition[J]. Applied Mechanics and Materials, 2010, 34-35: 1058-1063 doi: 10.4028/www.scientific.net/AMM.34-35.1058
    [2] CAO H R, ZHOU K, CHEN X F. Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators[J]. International Journal of Machine Tools and Manufacture, 2015, 92: 52-59 doi: 10.1016/j.ijmachtools.2015.03.002
    [3] ZHANG Z, LI H G, MENG G, et al. Chatter detection in milling process based on the energy entropy of VMD and WPD[J]. International Journal of Machine Tools and Manufacture, 2016, 108: 106-112 doi: 10.1016/j.ijmachtools.2016.06.002
    [4] 杨志刚. 基于主轴电机电流信号的镗削颤振监测研究[D]. 武汉: 华中科技大学, 2012.

    YANG Z G. Chatter detection in boring operations using spindle motor current[D]. Wuhan: Huazhong University of Science and Technology, 2012 (in Chinese).
    [5] 张攀. 数控机床在线振动监测与故障诊断关键技术研究[D]. 天津: 天津大学, 2014.

    ZHANG P. Research on vibration online monitoring and fault diagnosis of CNC machine tools[D]. Tianjin: Tianjin University, 2014 (in Chinese).
    [6] 韩振宇, 金鸿宇, 富宏亚. 基于ESPRIT频谱估计和隐马尔可夫模型的铣削颤振辨识系统建模[J]. 计算机集成制造系统, 2016, 22(8): 1937-1944

    HAN Z Y, JIN H Y, FU H Y. Modeling of chatter recognition system in CNC milling based on ESPRIT and hidden Markov model[J]. Computer Integrated Manufacturing Systems, 2016, 22(8): 1937-1944 (in Chinese)
    [7] LIU J, WU B, WANG Y, et al. An integrated condition-monitoring method for a milling process using reduced decomposition features[J]. Measurement Science and Technology, 2017, 28(8): 085101 doi: 10.1088/1361-6501/aa6bcc
    [8] 刘长福, 朱立达, 仇健, 等. 基于VMD和FFT的变切深侧铣颤振特征提取方法[J]. 东北大学学报, 2018, 39(8): 1153-1157

    LIU C F, ZHU L D, QIU J, et al. Chatter feature extraction method in variable cutting depth flank milling based on VMD and FFT[J]. Journal of Northeastern University, 2018, 39(8): 1153-1157 (in Chinese)
    [9] 吴杨宝. 工业机器人精镗飞机交点孔的颤振分析与识别[D]. 杭州: 浙江大学, 2018.

    WU Y B. Chatter analysis and identification in industrial robotic fine boring of aircraft intersection holes[D]. Hangzhou: Zhejiang University, 2018 (in Chinese).
    [10] AMAR M, GONDAL I, WILSON C. Vibration spectrum imaging: a novel bearing fault classification approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502 doi: 10.1109/TIE.2014.2327555
    [11] WANG P, ANANYA, YAN R Q, et al. Virtualization and deep recognition for system fault classification[J]. Journal of Manufacturing Systems, 2017, 44: 310-316 doi: 10.1016/j.jmsy.2017.04.012
    [12] OH H, JUNG J H, JEON B C, et al. Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3539-3549 doi: 10.1109/TIE.2017.2752151
    [13] ZHU Z Y, PENG G L, CHEN Y H, et al. A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis[J]. Neurocomputing, 2019, 323: 62-75 doi: 10.1016/j.neucom.2018.09.050
    [14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
    [15] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544 doi: 10.1109/TSP.2013.2288675
  • 加载中
图(8)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  62
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回