留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工程陶瓷磨削声发射和磨削温度磨削力联合监测的研究

郭力 郭君涛 李波

郭力,郭君涛,李波. 工程陶瓷磨削声发射和磨削温度磨削力联合监测的研究[J]. 机械科学与技术,2021,40(2):243-248 doi: 10.13433/j.cnki.1003-8728.20200035
引用本文: 郭力,郭君涛,李波. 工程陶瓷磨削声发射和磨削温度磨削力联合监测的研究[J]. 机械科学与技术,2021,40(2):243-248 doi: 10.13433/j.cnki.1003-8728.20200035
GUO Li, GUO Juntao, LI Bo. Study on Joint Monitoring of Grinding Temperature and Force in Grinding of Engineering Ceramics via Acoustic Emission[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 243-248. doi: 10.13433/j.cnki.1003-8728.20200035
Citation: GUO Li, GUO Juntao, LI Bo. Study on Joint Monitoring of Grinding Temperature and Force in Grinding of Engineering Ceramics via Acoustic Emission[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 243-248. doi: 10.13433/j.cnki.1003-8728.20200035

工程陶瓷磨削声发射和磨削温度磨削力联合监测的研究

doi: 10.13433/j.cnki.1003-8728.20200035
基金项目: 国家自然科学基金项目(51475157)
详细信息
    作者简介:

    郭力(1964−),教授,博士,研究方向为智能先进磨削技术与机床,guolihnu8@163.com

  • 中图分类号: TG580.6

Study on Joint Monitoring of Grinding Temperature and Force in Grinding of Engineering Ceramics via Acoustic Emission

  • 摘要: 磨削声发射可以对磨削过程实时监测,磨削声发射信号均方根AERMS可以用来分析磨削过程的特征。为了使用磨削力、磨削温度、磨削声发射来联合对工程陶瓷氧化锆与氧化铝磨削过程进行全面监测和对工程陶瓷磨削机理进行深入研究,通过实验研究了磨削声发射信号与磨削力和磨削温度之间的内在联系,建立了工程陶瓷氧化锆与氧化铝磨削声发射信号与磨削力和磨削温度、磨削表面粗糙度关系式。结果证明,磨削声发射是实时工程陶瓷磨削过程监测的有效方法。
  • 图  1  磨削实验台

    图  2  PSZ磨削AERMS

    图  3  2种工程陶瓷磨削AERMS

    图  4  PSZ磨削力与AERMS关系

    图  5  Al2O3磨削力与磨削AERMS

    图  6  PSZ磨削温度与AERMS关系

    图  7  PSZ的AERMS与表面粗糙度

    表  1  WSα声发射传感器参数

    传感器型号工作温度/℃中心频率/kHz工作范围/kHz
    WSα−65 ~ 17555100 ~ 1000
    下载: 导出CSV

    表  2  PSZ和Al2O3陶瓷的性能

    参数PSZAl2O3(99.5%)
    试件规格 35mm×13mm×13mm 35mm×15mm×10mm
    晶粒尺寸 ≤1 μm 2~5 μm
    烧结方式 常压烧结 常压烧结
    密度ρ 6 g/cm3 3.9 g/cm3
    抗弯强度σb 946 MPa 250 MPa
    微观硬度HV 1172×9.8 MPa 1559×9.8 MPa
    断裂韧性KIC 8.1 MPa·m1/2 4.99 MPa·m1/2
    弹性模量E 205 GPa 320 GPa
    下载: 导出CSV

    表  3  磨削实验方案

    序号实验材料砂轮速度/
    (m·s−1)
    工件速度/
    (m·min−1)
    磨削深度/
    mm
    1 PSZ 31.4 9 0.01    0.02
    0.03    0.04
    2 PSZ 31.4 12 0.01    0.02
    0.03    0.04
    3 Al2O3 31.4 12 0.01    0.02
    0.03    0.04
    下载: 导出CSV

    表  4  PSZ陶瓷的磨削力(vw=9 m/min)

    磨削深度/mm0.010.020.030.04
    Fn/(N·mm−1)3.25.47.39.0
    Ft/(N·mm−1)0.280.530.771.01
    磨削力比cf11.510.19.48.9
    下载: 导出CSV

    表  5  PSZ陶瓷的磨削力(vw=12 m/min)

    磨削深度/mm0.010.020.030.04
    Fn/(N·mm−1)3.76.28.410.4
    Ft/(N·mm−1)0.340.650.958.8
    磨削力比cf10.41.249.48.4
    下载: 导出CSV

    表  6  Al2O3陶瓷的磨削力(vw=12 m/min)

    磨削深度/mm0.010.020.030.04
    Fn/(N·mm−1)2.75.17.49.6
    Ft/(N·mm−1)0.330.771.261.78
    磨削力比cf8.06.65.85.4
    下载: 导出CSV
  • [1] 任敬心, 康仁科, 王西彬. 难加工材料磨削技术[M]. 北京: 电子工业出版社, 2011.

    REN J X, KANG R K, Wang X B. Grinding technology of difficult-to-machine materials[M]. Beijing: Publishing House of Electronics Industry, 2011 (in Chinese).
    [2] 郭力, 郭君涛, 王艺, 等. 磨削烧伤声发射智能监测的研究进展[J]. 制造技术与机床, 2018 (3): 13-18.

    GUO L, GUO J T, WANG Y, et al. Research progress of intelligent detection of acoustic emission in grinding burn[J]. Manufacturing Technology & Machine Tool, 2018 (3): 13-17 (in Chinese).
    [3] KIM H Y, KIM S R, AHN J H, et al. Process monitoring of centerless grinding using acoustic emission[J]. Journal of Materials Processing Technology, 2001, 111(1-3): 273-278 doi: 10.1016/S0924-0136(01)00533-7
    [4] 郭力, 邓喻, 霍可可. 氧化铝陶瓷磨削金刚石砂轮磨损的声发射监测[J]. 湖南大学学报, 2018, 45(4): 34-40

    GUO L, DENG Y, HUO K K. Acoustic emission monitoring of diamond wheel wear with grinding alumina ceramics grinding[J]. Journal of Hunan University, 2018, 45(4): 34-40 (in Chinese)
    [5] 郭力, 杜厚斌, 邓喻. 硬质合金PA30高速深磨过程中声发射信号特征的变化研究[J]. 金刚石与磨料磨具工程, 2017, 37(3): 35-39

    GUO L, DU H B, DENG Y. Characteristic changes of acoustic emission (AE) signal during high speed deep grinding of cemented carbide PA30[J]. Diamond & Abrasives Engineering, 2017, 37(3): 35-39 (in Chinese)
    [6] LIU Q, CHEN X, GINDY N. Investigation of acoustic emission signals under a simulative environment of grinding burn[J]. International Journal of Machine Tools and Manufacture, 2006, 46(3-4): 284-292 doi: 10.1016/j.ijmachtools.2005.05.017
    [7] CHEN X, ÖPÖZ T T. Effect of different parameters on grinding efficiency and its monitoring by acoustic emission[J]. Production & Manufacturing Research, 2016, 4(1): 190-208
    [8] GRIFFIN J M, CHEN X. Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(11): 1152-1168
    [9] YANG Z S, YU Z H, XIE C, et al. Application of Hilbert-Huang Transform to acoustic emission signal for burn feature extraction in surface grinding process[J]. Measurement, 2014, 47: 14-21 doi: 10.1016/j.measurement.2013.08.036
    [10] DIAS E A, PEREIRA F B, FILHO S L M R, et al. Monitoring of through-feed centreless grinding processes with acoustic emission signals[J]. Measurement, 2016, 94: 71-79 doi: 10.1016/j.measurement.2016.07.075
    [11] YIN G X, NISAL T, MARINESCU I D, et al. Monitoring the parameter effects of surface grinding process using temperature, acoustic emission and force measurement[C]//Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference, MSEC2014-3969, June 9-13, 2014. Detroit, Michigan, USA: ASME.
    [12] LIAO T W. Feature extraction and selection from acoustic emission signals with an application in grinding wheel condition monitoring[J]. Engineering Applications of Artificial Intelligence, 2010, 23(1): 74-84 doi: 10.1016/j.engappai.2009.09.004
    [13] 郭力, 尹韶辉, 李波, 等. 模拟磨削烧伤条件下的声发射信号特征[J]. 中国机械工程, 2009, 20(4): 413-416 doi: 10.3321/j.issn:1004-132X.2009.04.009

    GUO L, YIN S H, LI B, et al. Feature investigation of acoustic emission signals under a simulative environment of grinding burn[J]. China Mechanical Engineering, 2009, 20(4): 413-416 (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.04.009
    [14] 郭力, 邓喻. 采用遗传算法优化神经网络的铸铁表面粗糙度声发射预测[J]. 机械科学与技术, 2018, 37(10): 1512-1516

    GUO L, DENG Y. Acoustic emission monitor grinding surface roughness of cast iron via BP neural networks and genetic algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1512-1516 (in Chinese)
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  40
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回