留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钻井液固相对井下涡轮发电机性能影响

李方韬 薛启龙 王晋 刘宝林

李方韬,薛启龙,王晋, 等. 钻井液固相对井下涡轮发电机性能影响[J]. 机械科学与技术,2021,40(2):193-197 doi: 10.13433/j.cnki.1003-8728.20200032
引用本文: 李方韬,薛启龙,王晋, 等. 钻井液固相对井下涡轮发电机性能影响[J]. 机械科学与技术,2021,40(2):193-197 doi: 10.13433/j.cnki.1003-8728.20200032
LI Fangtao, XUE Qilong, WANG Jin, LIU Baolin. Influence of Drilling Fluid Solid Phase on Performance of Downhole Turbogenerator[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 193-197. doi: 10.13433/j.cnki.1003-8728.20200032
Citation: LI Fangtao, XUE Qilong, WANG Jin, LIU Baolin. Influence of Drilling Fluid Solid Phase on Performance of Downhole Turbogenerator[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 193-197. doi: 10.13433/j.cnki.1003-8728.20200032

钻井液固相对井下涡轮发电机性能影响

doi: 10.13433/j.cnki.1003-8728.20200032
基金项目: 国家自然科学基金项目(51704264)
详细信息
    作者简介:

    李方韬(1995−),硕士研究生,研究方向为岩土钻掘机械,zsyyws@gmail.com

    通讯作者:

    薛启龙,副教授,博士生导师,xql@cugb.edu.cn

  • 中图分类号: TE921

Influence of Drilling Fluid Solid Phase on Performance of Downhole Turbogenerator

  • 摘要: 井下涡轮发电机是常见的井下供电电源之一,钻井液固相会对井下涡轮发电机的性能产生影响。利用Fluent软件,基于Eulerian多相流模型,对涡轮发电机进行三维数值模拟,研究了钻井液固相含量、固相粒径、固相密度对井下涡轮发电机的性能影响。仿真结果表明:随着固相含量增加,涡轮发电机的压降、扭矩、输入输出功率及效率增加;随着固相粒径的增加,涡轮发电机的压降、扭矩、输入输出功率先增加后趋于稳定,效率逐渐增加但增幅减小;随着固相密度增加,涡轮发电机的压降、扭矩、输入输出功率及效率近似呈线性增加,效率增加但增幅逐渐变小。
  • 图  1  井下涡轮发电机示意图

    图  2  全三维仿真模型与网格划分

    图  3  涡轮发电机液相与固相流线图

    图  4  固相含量对涡轮发电机性能的影响

    图  5  固相粒径对涡轮发电机性能的影响

    图  6  固相密度对涡轮发电机性能的影响

    表  1  井下涡轮叶片基本参数

    参数数值参数数值
    外径/mm 76 螺旋升角/(°) 45
    内径/mm 60 叶高/mm 15
    叶片轴长/mm 70 整体轴长/mm 144
    叶片数目/个 11 叶片厚度/mm 4
    下载: 导出CSV

    表  2  井下涡轮发电机仿真方案

    方案固相含量/%固相粒径/μm固相密度/(kg·m−3)
    12, 6, 10, 14, 18404200
    261, 20, 40, 60, 804200
    36403400, 3800, 4200,
    4600, 5000
    下载: 导出CSV
  • [1] 剧远东, 冯进, 朱云. 机翼型涡轮流体仿真分析[J]. 长江大学学报, 2013, 10(12): 78-79, 93

    JU Y D, FENG J, ZHU Y. The engineering analysis of a airfoil turbine[J]. Journal of Yangtze University, 2013, 10(12): 78-79, 93 (in Chinese)
    [2] 张师帅, 杨勤, 黄书才, 等. 井下泥浆涡轮水力性能数值模拟及试验验证[J]. 流体机械, 2012, 40(8): 13-16

    ZHANG S S, YANG Q, HUANG S C, et al. Numerical simulation and test research on the hydraulic performance of downhole mud turbine[J]. Fluid Machinery, 2012, 40(8): 13-16 (in Chinese)
    [3] 张晓东, 欧松, 龚彦, 等. 井下涡轮发电机叶片改型与优化设计[J]. 机械科学与技术, 2018, 37(5): 663-668

    ZHANG X D, OU S, GONG Y, et al. Modification and optimization design of blade for down-hole turbine generator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5): 663-668 (in Chinese)
    [4] 董斌. 井下涡轮永磁发电机设计及控制[D]. 荆州: 长江大学, 2017

    DONG B. The design of downhole turbine permanent magnet generator and control system[D]. Jingzhou: Yangtze University, 2017 (in Chinese)
    [5] SATTI R, PILLALAMARRI N R, SCHOLZ E. Computational Fluid Dynamics (CFD) analysis of a single-stage downhole turbine[C]//ASME 2013 Fluids Engineering Division Summer Meeting. New York: American Society of Mechanical Engineers, 2013: V01AT03A011
    [6] 荆宝德, 王智明, 曲海乐, 等. 随钻测井用井下发电机系统的涡轮设计[J]. 光学 精密工程, 2012, 20(3): 616-624 doi: 10.3788/OPE.20122003.0616

    JING B D, WANG Z M, QU H L, et al. Turbine design of turbine generator system for LWD[J]. Optics and Precision Engineering, 2012, 20(3): 616-624 (in Chinese) doi: 10.3788/OPE.20122003.0616
    [7] 吕官云, 孙峰, 冯进, 等. 井下发电机涡轮设计、动力模拟与性能试验[J]. 石油机械, 2011, 39(7): 25-29

    LÜ G Y, SUN F, FENG J, et al. The design, power simulation and performance experiment of the downhole generator turbine[J]. China Petroleum Machinery, 2011, 39(7): 25-29 (in Chinese)
    [8] 刘孝光, 冯进, 张慢来, 等. 基于CFD分析的涡轮钻具力学性能预测[J]. 石油机械, 2004, 32(S1): 15-17, 76

    LIU X G, FENG J, ZHANG M L, et al. Prediction of mechanical properties of turbodrill based on CFD analysis[J]. China Petroleum Machinery, 2004, 32(S1): 15-17, 76 (in Chinese)
    [9] 王平全, 杨坤宾, 朱涛, 等. 复配重晶石对水基钻井液性能的影响[J]. 钻井液与完井液, 2014, 31(1): 16-19 doi: 10.3969/j.issn.1001-5620.2014.01.005

    WANG P Q, YANG K B, ZHU T, et al. Study of the effects of mixed sized barite on the water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 16-19 (in Chinese) doi: 10.3969/j.issn.1001-5620.2014.01.005
    [10] 沈玉琴. 井下涡轮发电机导轮与涡轮结构优化与分析[D]. 广州: 华南理工大学, 2015

    SHEN Y Q. Optimal design and simulation of stator and rotor for downhole turbine generator[D]. Guangzhou: South China University of Technology, 2015 (in Chinese)
    [11] 王树杰, 于晓丽, 袁鹏, 等. 水平轴潮流能水轮机性能的数值模拟与实验[J]. 太阳能学报, 2018, 39(5): 1203-1209

    WANG S J, YU X L, YUAN P, et al. Numerical simulation and experimental research on performance of horizontal axis tidal turbine[J]. Acta Energiae Solaris Sinica, 2018, 39(5): 1203-1209 (in Chinese)
    [12] 姬芬竹, 张梦杰, 王瑞, 等. 冲压空气涡轮叶片设计和气动性能数值模拟[J]. 北京航空航天大学学报, 2018, 44(7): 1387-1394

    JI F Z, ZHANG M J, WANG R, et al. Blade design and aerodynamic performance numerical simulation on ram air turbine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1387-1394 (in Chinese)
    [13] PEOPLE R, BEAN J C. Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures[J]. Applied Physics Letters, 1985, 47(3): 322-324 doi: 10.1063/1.96206
    [14] 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016

    TANG J P. ANSYS FLUENT 16.0 super learning manual[M]. Beijing: People's Posts and Telecommunications Press, 2016 (in Chinese)
    [15] 黄思, 舒亚篮, 周锦驹, 等. 应用CFD-DEM耦合模拟计算排泥管及法兰连接处固液两相流(英文)[J]. 机床与液压, 2017, 45(12): 1-6 doi: 10.3969/j.issn.1001-3881.2017.12.001

    HUANG S, SHU Y L, ZHOU J J, et al. Numerical simulation for solid-liquid two-phase flow in discharge pipeline and flange connection by CFD-DEM coupling[J]. Machine Tool & Hydraulics, 2017, 45(12): 1-6 (in Chinese) doi: 10.3969/j.issn.1001-3881.2017.12.001
    [16] 张梦梦, 崔政伟. 基于FLUENT的双螺带混合机固液两相流数值模拟[J]. 包装与食品机械, 2019, 37(1): 29-34 doi: 10.3969/j.issn.1005-1295.2019.01.007

    ZHANG M M, CUI Z W. Numerical simulation of solid-liquid two-phase flow in twin-screw mixer based on FLUENT[J]. Packaging and Food Machinery, 2019, 37(1): 29-34 (in Chinese) doi: 10.3969/j.issn.1005-1295.2019.01.007
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  38
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-23
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回