留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学法石墨烯分散液的制备及其摩擦学性能的研究

董懿 张艳岗 刘勇 郭泽宇 白羽 郭巨寿

董懿,张艳岗,刘勇, 等. 化学法石墨烯分散液的制备及其摩擦学性能的研究[J]. 机械科学与技术,2020,39(8):1295-1298 doi: 10.13433/j.cnki.1003-8728.20200025
引用本文: 董懿,张艳岗,刘勇, 等. 化学法石墨烯分散液的制备及其摩擦学性能的研究[J]. 机械科学与技术,2020,39(8):1295-1298 doi: 10.13433/j.cnki.1003-8728.20200025
Dong Yi, Zhang Yan′gang, Liu Yong, Guo Zeyu, Bai Yu, Guo Jushou. Preparation and Tribological Properties of Chemical Graphene Distillation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1295-1298. doi: 10.13433/j.cnki.1003-8728.20200025
Citation: Dong Yi, Zhang Yan′gang, Liu Yong, Guo Zeyu, Bai Yu, Guo Jushou. Preparation and Tribological Properties of Chemical Graphene Distillation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1295-1298. doi: 10.13433/j.cnki.1003-8728.20200025

化学法石墨烯分散液的制备及其摩擦学性能的研究

doi: 10.13433/j.cnki.1003-8728.20200025
基金项目: 国家自然科学基金项目(51605447)与山西省重点实验室基金项目(NFCM201703)资助
详细信息
    作者简介:

    董懿(1994−),硕士研究生,研究方向为微/纳尺度下的摩擦与润滑,861366929@qq.com

    通讯作者:

    刘勇,讲师,博士,yongliu_epe@nuc.edu.cn

  • 中图分类号: TH117

Preparation and Tribological Properties of Chemical Graphene Distillation

  • 摘要: 采用化学氧化还原法,得到的石墨烯薄片,用油酸、硬脂酸对其进行改性,通过分光光度法考察石墨烯作为润滑油添加剂的分散稳定性。使用四球摩擦磨损试验机考察了石墨烯分散液的摩擦学性能,利用扫描电镜和能谱仪对摩擦表面的微观形貌和组成结构进行了表征分析。结果表明:对石墨烯改性处理是将其均匀分散到润滑油中的必要条件,改性后的石墨烯分散液表现出良好的抗磨减摩性能,平均摩擦系数为0.078,降低约12%,磨斑直径也有明显下降,且实验验证了磨损表面有石墨烯颗粒堆积现象。
  • 图  1  石墨烯SEM图像

    图  2  改性石墨烯的吸收值随波长的变化曲线

    图  3  纯基础油、未改性和改性后的石墨烯分散液摩擦因数随时间的变化曲线

    图  4  采用纯基础油、未改性和改性后的石墨烯润滑的钢表面磨损轨迹的SEM显微镜照片和EDS光谱

  • [1] Long Y, De Barros Bouchet M I, Lubrecht T, et al. Superlubricity of glycerol by self-sustained chemical polishing[J]. Scientific Reports, 2019, 9(1): 6286 doi: 10.1038/s41598-019-42730-9
    [2] 温诗铸, 黄平. 摩擦学原理[M]. 4版. 北京: 清华大学出版社, 2012

    Wen S Z, Huang P. Principles of tribology[M]. 4th ed. Beijing: Tsinghua University Press, 2012 (in Chinese)
    [3] Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars[J]. Tribology International, 2012, 47: 221-234 doi: 10.1016/j.triboint.2011.11.022
    [4] Holmberg K, Andersson P, Nylund N O, et al. Global energy consumption due to friction in trucks and buses[J]. Tribology International, 2014, 78: 94-114 doi: 10.1016/j.triboint.2014.05.004
    [5] 韦毅铭. 叶酸靶向介导纳米氧化石墨烯的制备及其负载铂类抗癌金属配合物的性能研究[D]. 南宁: 广西医科大学, 2017

    Wei Y M. The study on the preperration and drug loading properties a of folater-tageted nano grephene oxide[D]. Nanjing: Guangxi Medical University, 2017 (in Chinese)
    [6] 薛传艺, 王守仁, 冷金凤, 等. 改性石墨烯润滑油摩擦学特性研究[J]. 山东科学, 2018, 31(2): 45-49 doi: 10.3976/j.issn.1002-4026.2018.02.008

    Xue C Y, Wang S R, Leng J F, et al. Tribological properties of modified graphene lubricant[J]. Shandong Science, 2018, 31(2): 45-49 (in Chinese) doi: 10.3976/j.issn.1002-4026.2018.02.008
    [7] Berman D, Deshmukh S A, Sankaranarayanan S K R S, et al. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 348(6239): 1118-1122 doi: 10.1126/science.1262024
    [8] Van Wijk M M, de Wijn A S, Fasolino A. Collective superlubricity of graphene flakes[J]. Journal of Physics Condensed Matter, 2016, 28(13): 134007 doi: 10.1088/0953-8984/28/13/134007
    [9] Liu Y L, Grey F, Zheng Q S. The high-speed sliding friction of graphene and novel routes to persistent superlubricity[J]. Scientific Reports, 2014, 4: 4875
    [10] Kawai S, Benassi A, Gnecco E, et al. Superlubricity of graphene nanoribbons on gold surfaces[J]. Science, 2016, 351(6276): 957-961 doi: 10.1126/science.aad3569
    [11] Novikova A A, Burlakova V E, Varavka V N, et al. Influence of glycerol dispersions of graphene oxide on the friction of rough steel surfaces[J]. Journal of Molecular Liquids, 2019, 284: 1-11 doi: 10.1016/j.molliq.2019.03.111
    [12] Narayan R, Kim S O. Surfactant mediated liquid phase exfoliation of graphene[J]. Nano Convergence, 2015, 2(1): 20 doi: 10.1186/s40580-015-0050-x
    [13] Lin J S, Wang L W, Chen G H. Modification of graphene platelets and their tribological properties as a lubricant additive[J]. Tribology Letters, 2011, 41(1): 209-215 doi: 10.1007/s11249-010-9702-5
    [14] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105 doi: 10.1038/nnano.2007.451
    [15] 付长璟. 石墨烯的制备、结构及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017

    Fu C J. The preparation, structure and application of grapheme[M]. Harbin: Harbin Institute of Technology Press, 2017 (in Chinese)
    [16] 刘向波. 石墨烯润滑油添加剂及其内燃机摩擦学性能研究[D]. 天津: 天津大学, 2017

    Liu X B. Study on graphene lubricant additive and its tribological properties on internal combustion engine[D]. Tianjin: Tianjin University, 2017 (in Chinese)
    [17] Restuccia P, Righi M C. Tribochemistry of graphene on iron and its possible role in lubrication of steel[J]. Carbon, 2016, 106: 118-124 doi: 10.1016/j.carbon.2016.05.025
    [18] 郑帅周, 周琦, 杨生荣, 等. 氟化石墨烯的制备及其作为润滑油添加剂的摩擦学性能研究[J]. 摩擦学学报, 2017, 37(3): 402-408

    Zheng S Z, Zhou Q, Yang S R, et al. Preparation and tribological properties of fluorinated graphene nanosheets as additive in lubricating oil[J]. Tribology, 2017, 37(3): 402-408 (in Chinese)
    [19] 甘明洋. 高性能聚酰亚胺基润滑防护涂层的制备及研究[D]. 兰州: 兰州理工大学, 2017

    Gan M Y. Study and preparation of high performance polyimide based lubricating and protectings coatings[D]. Lanzhou: Lanzhou University of Technology, 2017 (in Chinese)
    [20] 蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1): 93-112

    Pu J B, Wang L P, Xue Q J. Progress of tribology of graphene and graphene-based composite lubricating materials[J]. Tribology, 2014, 34(1): 93-112 (in Chinese)
  • 加载中
图(4)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  99
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-31
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2020-08-05

目录

    /

    返回文章
    返回