留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究

王海云 王剑平 罗付华

王海云,王剑平,罗付华. 融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究[J]. 机械科学与技术,2021,40(2):262-269 doi: 10.13433/j.cnki.1003-8728.20200024
引用本文: 王海云,王剑平,罗付华. 融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究[J]. 机械科学与技术,2021,40(2):262-269 doi: 10.13433/j.cnki.1003-8728.20200024
WANG Haiyun, WANG Jianping, LUO Fuhua. Study on Surface Defect Detection of Metal Sheet and Strip using Faster R-CNN with Multilevel Feature[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 262-269. doi: 10.13433/j.cnki.1003-8728.20200024
Citation: WANG Haiyun, WANG Jianping, LUO Fuhua. Study on Surface Defect Detection of Metal Sheet and Strip using Faster R-CNN with Multilevel Feature[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 262-269. doi: 10.13433/j.cnki.1003-8728.20200024

融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究

doi: 10.13433/j.cnki.1003-8728.20200024
基金项目: 国家重点研发计划(2017YFB0306405)、国家自然科学基金项目(61364008)、云南省重点研发项目(2018BA070)及昆明理工大学复杂工业控制学科方向团队建设计划项目
详细信息
    作者简介:

    王海云(1994−),硕士研究生,研究方向为工业检测与机器视觉等,1563713769@qq.com

    通讯作者:

    王剑平,副教授,硕士生导师,kmustwjp@126.com

  • 中图分类号: TP274

Study on Surface Defect Detection of Metal Sheet and Strip using Faster R-CNN with Multilevel Feature

  • 摘要: 针对金属板带材表面缺陷呈现形式存在多样性和随机性而导致难以快速定位并准确识别的问题,提出一种融合多层次特征的Faster R-CNN缺陷目标检测算法(Defect-target detection network, DDN)。该算法采用多层次特征融合网络(Multilevel-feature fusion network, MFN)融合Faster R-CNN中VGG-16提取的各层次特征图,得到具有丰富位置信息和语义信息的融合特征图,后续网络基于该融合特征图产生最终的缺陷检测结果。利用钢带和铜板表面缺陷检测数据集评估本文算法性能,实验结果表明,提出的DNN能够快速准确检测出具有不同尺度的多类缺陷,与Faster R-CNN相比,在不损耗过多检测时间的前提下具有更优的检测精度,平均检测时间为129.65 ms或153.17 ms,平均准确率均值(Mean average precision, mAP)为86.13%或92.54%。
  • 图  1  DNN网络结构

    图  2  NEU-DET数据集的6类典型表面缺陷图像示例样本

    图  3  KMUST-DET数据集的3类缺陷图像示例样本

    图  4  NEU-DET缺陷检测结果示例

    图  5  KMUST-DET缺陷检测结果示例

    表  1  MFN各分支网络配置

    F2F3F4F5
    [3×3,256,s2] [3×3,256,s2] [3×3,256,s2] [1×1,128]
    [3×3,256,s2] [3×3,256,s2] [1×1,128]
    [3×3,256,s2] [1×1,128]
    [1×1,128]
    注:s2表示步长为2
    下载: 导出CSV

    表  2  锚框具体参数配置

    参数值的个数
    基准面积 16×16 1
    尺度 [1,2,4,8,16,32] 6
    宽高比 [0.5,1.0,1.5,2.0] 4
    下载: 导出CSV

    表  3  NEU-DET数据集中的缺陷样本分布

    样本类型训练样本验证样本测试样本标签总计
    网纹 218 29 53 1 300
    夹杂 223 20 57 2 300
    斑块 207 27 66 3 300
    表面麻点 218 24 58 4 300
    氧化铁皮压入 221 17 62 5 300
    划伤 209 27 64 6 300
    总计 1296 144 360 1800
    下载: 导出CSV

    表  4  KMUST-DET数据集中的缺陷样本分布

    样本类型训练样本验证样本测试样本标签总计
    黑点 362 40 106 1 508
    油滴 408 46 116 2 570
    划伤 457 51 119 3 627
    总计 1227 137 341 1705
    下载: 导出CSV

    表  5  实验计算机主要配置

    硬件环境软件环境
    处理器:Intel Xeon CPU
    E5-2620 v4
    开发语言:Python 3.5.2
    显卡:NVIDIA 1080 Ti,
    12 GB GDDR5X
    深度学习框架:
    tensorflow-gpu-1.6.0
    内存:32 GB DDR4 操作系统:Windows
    Server 2012 R2
    下载: 导出CSV

    表  6  不同算法在NEU-DET测试集下的测试结果

    算法mAPAP/%平均测试时间/ms
    CrInPaPSRSSc
    Faster R-CNN+VGG-16 85.17 77.79 84.08 90.64 87.71 79.96 90.82 125.48
    Faster R-CNN+ResNet-50 84.96 71.47 84.07 88.63 87.84 82.52 95.22 112.33
    DNN 86.13 75.11 84.20 88.83 87.76 83.63 97.26 129.65
    下载: 导出CSV

    表  7  不同算法在KMUST-DET测试集下的测试结果

    算法mAPAP/%平均测试时间/ms
    BSODSc
    Faster R-CNN+VGG-16 88.97 90.91 86.12 89.89 143.55
    Faster R-CNN+ResNet-50 88.69 90.91 86.04 89.13 128.63
    DNN 92.54 99.46 87.86 90.29 153.17
    下载: 导出CSV

    表  8  不同算法在不同IoU阈值下的mAP

    算法数据集mAP/%
    IoU = 0.1IoU = 0.2IoU = 0.3IoU = 0.4IoU = 0.5IoU = 0.6IoU = 0.7IoU = 0.8
    Faster R-CNN+VGG-16 NEU-DET 87.11 86.22 85.17 81.01 70.61 55.19 36.58 14.97
    Faster R-CNN+ResNet-50 88.01 86.75 84.96 81.41 70.25 53.30 33.27 15.75
    DNN 88.72 88.62 86.13 80.40 71.79 57.01 37.50 17.14
    Faster R-CNN+VGG-16 KMUST-DET 92.38 92.08 88.97 86.89 84.01 76.11 62.01 38.15
    Faster R-CNN+ResNet-50 91.44 91.20 88.69 86.38 84.47 74.25 56.13 26.58
    DNN 92.79 92.71 92.53 89.06 85.85 78.20 63.11 33.11
    下载: 导出CSV

    表  9  不同算法在不同候选区域数目K下的mAP

    算法数据集mAP/%
    K = 50K = 100K = 150K = 200K = 250K = 300
    Faster R-CNN+VGG-16 NEU-DET 83.65 85.04 84.62 84.74 85.33 85.17
    Faster R-CNN+ResNet-50 82.62 85.00 85.33 85.60 85.27 84.96
    DNN 83.47 84.91 85.03 86.12 86.47 86.13
    Faster R-CNN+VGG-16 KMUST-DET 86.67 89.74 90.35 88.89 89.06 88.97
    Faster R-CNN+ResNet-50 83.96 86.86 88.71 88.61 88.74 88.69
    DNN 84.00 91.47 92.44 92.46 92.49 92.53
    下载: 导出CSV
  • [1] GHORAI S, MUKHERJEE A, GANGADARAN M, et al. Automatic defect detection on hot-rolled flat steel products[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(3): 612-621 doi: 10.1109/TIM.2012.2218677
    [2] XIAO M, JIANG M M, LI G Y, et al. An evolutionary classifier for steel surface defects with small sample set[J]. EURASIP Journal on Image and Video Processing, 2017, 2017(1): 48 doi: 10.1186/s13640-017-0197-y
    [3] CHU M X, ZHAO J, LIU X P, et al. Multi-class classification for steel surface defects based on machine learning with quantile hyper-spheres[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 168: 15-27 doi: 10.1016/j.chemolab.2017.07.008
    [4] 化春键, 周海英. 改进组合分类器的冷轧带钢表面缺陷识别研究[J]. 机械科学与技术, 2017, 36(11): 1785-1790

    HUA C J, ZHOU H Y. Study on surface defect recognition of cold rolled steel strip by improving combinationclassifier[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1785-1790 (in Chinese)
    [5] LIU K, WANG H Y, CHEN H Y, et al. Steel surface defect detection using a new Haar-Weibull-variance model in unsupervised manner[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(10): 2585-2596 doi: 10.1109/TIM.2017.2712838
    [6] YI L, LI G Y, JIANG M M. An end‐to‐end steel strip surface defects recognition system based on convolutional neural networks[J]. Steel Research International, 2017, 88(2): 1600068 doi: 10.1002/srin.201600068
    [7] ZHOU S Y, CHEN Y P, ZHANG D L, et al. Classification of surface defects on steel sheet using convolutional neural networks[J]. Materiali in Tehnologije, 2017, 51(1): 123-131 doi: 10.17222/mit.2015.335
    [8] NATARAJAN V, HUNG T Y, VAIKUNDAM S, et al. Convolutional networks for voting-based anomaly classification in metal surface inspection[C]// Proceedings of 2017 IEEE International Conference on Industrial Technology. Toronto, ON, Canada: IEEE, 2017
    [9] HE D, XU K, ZHOU P, et al. Surface defect classification of steels with a new semi-supervised learning method[J]. Optics and Lasers in Engineering, 2019, 117: 40-48 doi: 10.1016/j.optlaseng.2019.01.011
    [10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 580-587
    [11] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448.
    [12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149 doi: 10.1109/TPAMI.2016.2577031
    [13] LANZA-GUTIÉRREZ J M, XU X J, YANG F, et al. Railway subgrade defect automatic recognition method based on improved faster R-CNN[J]. Scientific Programming, 2018, 2018: 4832972
    [14] 常海涛, 苟军年, 李晓梅. Faster R-CNN在工业CT图像缺陷检测中的应用[J]. 中国图象图形学报, 2018, 23(7): 1061-1071 doi: 10.11834/jig.170577

    CHANG H T, GOU J N, LI X M. Application of faster R-CNN in image defect detection of industrial CT[J]. Journal of Image and Graphics, 2018, 23(7): 1061-1071 (in Chinese) doi: 10.11834/jig.170577
    [15] SONG K C, YAN Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science, 2013, 285: 858-864 doi: 10.1016/j.apsusc.2013.09.002
  • 加载中
图(5) / 表(9)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  207
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-20
  • 刊出日期:  2021-02-02

目录

    /

    返回文章
    返回