留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限矩型液力偶合器流场特性预测

王阳 李志鹏

王阳,李志鹏. 限矩型液力偶合器流场特性预测[J]. 机械科学与技术,2020,39(12):1865-1871 doi: 10.13433/j.cnki.1003-8728.20200023
引用本文: 王阳,李志鹏. 限矩型液力偶合器流场特性预测[J]. 机械科学与技术,2020,39(12):1865-1871 doi: 10.13433/j.cnki.1003-8728.20200023
Wang Yang, Li Zhipeng. Predicting Flow Field Characteristics of Torque-limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1865-1871. doi: 10.13433/j.cnki.1003-8728.20200023
Citation: Wang Yang, Li Zhipeng. Predicting Flow Field Characteristics of Torque-limited Hydrodynamic Coupling[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1865-1871. doi: 10.13433/j.cnki.1003-8728.20200023

限矩型液力偶合器流场特性预测

doi: 10.13433/j.cnki.1003-8728.20200023
详细信息
    作者简介:

    王阳(1997−),硕士研究生,研究方向为流体机械及工程,836181522@qq.com

    通讯作者:

    李志鹏,教授,硕士生导师,1379448@163.com

  • 中图分类号: TH137.331

Predicting Flow Field Characteristics of Torque-limited Hydrodynamic Coupling

  • 摘要: 限矩型液力偶合器的工作状态始终是部分充液,内部气—液两相流体介质在泵轮流道和涡轮流道之间做螺旋环流运动。以YOX500液力偶合器为研究对象,利用CFD(Computational fluid dynamics)软件中的滑移网格法与流体体积法VOF(Volume of fluid)对液力偶合器内部流场进行瞬态分析,得到了液力偶合器内部两相、速度、压力分布,总结了其流场结构的变化与规律。同时对其外特性进行计算,将模拟结果与实验结果进行比较分析,对所使用的CFD数值计算方法的有效性进行评价,为液力偶合器内部流道的设计和优化提供方法。
  • 图  1  YOX500流道模型与网格模型

    图  2  3种充液率下液相体积分布云图(i = 0)

    图  3  3种充液率下速度矢量图(i = 0)

    图  4  3种充液率下压力分布云图(i = 0)

    图  5  3种充液率下液相体积分布云图(i = 0.6)

    图  6  3种充液率下速度矢量图(i = 0.6)

    图  7  3种充液率下压力分布云图(i = 0.6)

    图  8  3种充液率下液相体积分布云图(i = 0.96)

    图  9  3种充液率下速度矢量图(i = 0.96)

    图  10  3种充液率下压力分布云图(i = 0.96)

    图  11  试验与仿真结果对比图

  • [1] 刘应诚. 液力偶合器应用与节能500问[M]. 北京: 机械工业出版社, 2013.

    Liu Y C. 500 problems in the application and energy saving of hydraulic couplings[M]. Beijing: China Machine Press, 2013 (in Chinese)
    [2] 马占峰. 限矩型液力偶合器的研究与应用[J]. 现代农业, 2006,(9): 56-57 doi: 10.3969/j.issn.1008-0708.2006.09.035

    Ma Z F. Research and application of torque-limited hydrodynamic coupling[J]. Modern Agriculture, 2006,(9): 56-57 (in Chinese) doi: 10.3969/j.issn.1008-0708.2006.09.035
    [3] 刘应诚. 大力发展液力传动工业为国家节能事业作贡献[J]. 液压气动与密封, 2010, 30(5): 3-5 doi: 10.3969/j.issn.1008-0813.2010.05.002

    Liu Y C. To develop hydrodynamic industry vigorously for contributing national energy saving[J]. Hydraulics Pneumatics and Seals, 2010, 30(5): 3-5 (in Chinese) doi: 10.3969/j.issn.1008-0813.2010.05.002
    [4] 杨乃乔, 邹铁汉. 简评国产限矩型液力偶合器[J]. 现代零部件, 2005,(10): 20-22, 24

    Yang N Q, Zou T H. A Brief comment on domestic limited-liquid fluid couplings[J]. Modern Components, 2005,(10): 20-22, 24 (in Chinese)
    [5] 宋彬, 吕建刚, 郭劭琰, 等. 液力偶合器制动工况流场仿真与特性分析[J]. 机械设计与研究, 2011, 27(1): 26-30

    Song B, Lü J G, Guo S Y, et al. Simulation and characteristic analysis on flow field of fluid couplings during braking[J]. Machine Design and Research, 2011, 27(1): 26-30 (in Chinese)
    [6] Christen M, Kemchen R. Fluid velocity in constant fill turbo couplings: Measurements using laser Doppler velocimetry[J]. Antriebstechnik, 2001, 40: 71-74
    [7] Hampel U, Hoppe D, Diele K H, et al. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005, 16(2-3): 85-90 doi: 10.1016/j.flowmeasinst.2004.10.001
    [8] 李兴忠, 胡春玉, 卢秀泉. 典型工况下液力偶合器内流场PIV试验[J]. 实验室研究与探索, 2019, 38(5): 20-22, 41 doi: 10.3969/j.issn.1006-7167.2019.05.007

    Li X Z, Hu C Y, Lu X Q. Research on PIV test of hydraulic coupling under typical working conditions[J]. Research and Exploration in Laboratory, 2019, 38(5): 20-22, 41 (in Chinese) doi: 10.3969/j.issn.1006-7167.2019.05.007
    [9] 卢秀泉, 胡春玉, 柴亚龙, 等. 动态调速工况液力偶合器瞬态流场PIV试验[J]. 华中科技大学学报, 2019, 47(4): 50-54

    Lu X Q, Hu C Y, Chai Y L, et al. Experiment of transient flow field of hydrodynamic coupling under dynamic speed regulation with PIV[J]. Journal of Huazhong University of Science and Technology, 2019, 47(4): 50-54 (in Chinese)
    [10] 柴博森, 项玥, 马文星, 等. 液力偶合器漩涡流场PIV试验测量影响因素分析[J]. 华南理工大学学报, 2017, 45(12): 92-98

    Chai B S, Xiang Y, Ma W X, et al. Analysis of influencing factors of PIV experimental measurement for vortex flow field in hydrodynamic coupling[J]. Journal of South China University of Technology, 2017, 45(12): 92-98 (in Chinese)
    [11] 吴岳诗. 调速型液力偶合器动态特性预测及充排液控制系统研究[D]. 长春: 吉林大学, 2015.

    Wu Y S. Prediction of dynamic performance and study on hydraulic control system of variable speed hydrodynamic coupling[D]. Changchun: Jilin University, 2015 (in Chinese).
    [12] 卢秀泉, 马文星, 李雪松. 限矩型液力偶合器气-液两相环流特性仿真预测[J]. 农业工程学报, 2014, 30(9): 27-34 doi: 10.3969/j.issn.1002-6819.2014.09.004

    Lu X Q, Ma W X, Li X S, et al. Simulation and prediction on fluid-gas circulation characteristics of torque limited hydrodynamic coupling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9): 27-34 (in Chinese) doi: 10.3969/j.issn.1002-6819.2014.09.004
    [13] 范丽丹, 马文星, 柴博森, 等. 液力偶合器气液两相流动的数值模拟与粒子图像测速[J]. 农业工程学报, 2011, 27(11): 66-70 doi: 10.3969/j.issn.1002-6819.2011.11.013

    Fan L D, Ma W X, Chai B S, et al. Numerical simulation and particle image velocimetry for gas-liquid two-phase flow in hydraulic couplings[J]. Transactions of the CSAE, 2011, 27(11): 66-70 (in Chinese) doi: 10.3969/j.issn.1002-6819.2011.11.013
    [14] Bai L, Mitra K, Fiebig M. Computation of unsteady 3D turbulent flow and torque transmission in fluid coupling[M]//Deshpande S M, Desai S S, Narasimha R. Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Heidelberg: Springer, 1995: 435-440.
    [15] Mckinnon C N, Brennen D, Brennen C E. Hydraulic analysis of a reversible fluid coupling[J]. Journal of Fluids Engineering, 2001, 123(2): 249-255 doi: 10.1115/1.1350819
    [16] 姚子生. 液力偶合器部分充液两相流动数值模拟与分析[D]. 长春: 吉林大学, 2008.

    Yao Z S. Numerical simulation and analysis of two-phase flow in partially filled hydrodynamic coupling[D]. Changchun: Jilin University, 2008 (in Chinese).
    [17] 刘丹丹, 刘朝霞, 邵万珍, 等. 基于CFD的YOTCGP650型液力偶合器流场仿真分析[J]. 液压气动与密封, 2015, 35(7): 22-25 doi: 10.3969/j.issn.1008-0813.2015.07.007

    Liu D D, Liu Z X, Shao W Z, et al. Analysis on the flow field simulation of YOTCGP650 type hydraulic coupling based on CFD[J]. Hydraulics Pneumatics & Seals, 2015, 35(7): 22-25 (in Chinese) doi: 10.3969/j.issn.1008-0813.2015.07.007
    [18] 卢秀泉, 沈小文, 袁哲, 等. 大功率限矩型液力偶合器耦合流场特性预测[J]. 华中科技大学学报, 2015, 43(11): 11-15

    Lu X Q, Shen X W, Yuan Z, et al. Performance prediction for coupled field of high-power torque limited hydrodynamic coupling[J]. Journal of Huazhong University of Science and Technology, 2015, 43(11): 11-15 (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  74
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-13
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回