留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向FDM筒形件尺寸收缩特性的数值模拟研究

南思豪 刘健 关舒文

南思豪, 刘健, 关舒文. 面向FDM筒形件尺寸收缩特性的数值模拟研究[J]. 机械科学与技术, 2021, 40(1): 101-108. doi: 10.13433/j.cnki.1003-8728.20200021
引用本文: 南思豪, 刘健, 关舒文. 面向FDM筒形件尺寸收缩特性的数值模拟研究[J]. 机械科学与技术, 2021, 40(1): 101-108. doi: 10.13433/j.cnki.1003-8728.20200021
NAN Sihao, LIU Jian, GUAN Shuwen. Study on Numerical Simulation of Size Shrinkage Behavior for Cylindrical Parts via FDM[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 101-108. doi: 10.13433/j.cnki.1003-8728.20200021
Citation: NAN Sihao, LIU Jian, GUAN Shuwen. Study on Numerical Simulation of Size Shrinkage Behavior for Cylindrical Parts via FDM[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 101-108. doi: 10.13433/j.cnki.1003-8728.20200021

面向FDM筒形件尺寸收缩特性的数值模拟研究

doi: 10.13433/j.cnki.1003-8728.20200021
基金项目: 

陕西省自然科学基础研究计划项目 2019JM-180

详细信息
    作者简介:

    南思豪(1995-), 硕士研究生, 研究方向为3D打印仿真分析, 1486107850@qq.com

    通讯作者:

    刘健, 副教授, 硕士生导师, liujian@xaut.edu.cn

  • 中图分类号: TH164

Study on Numerical Simulation of Size Shrinkage Behavior for Cylindrical Parts via FDM

  • 摘要: 针对筒形件在熔融沉积成型(fused deposition modeling, FDM)过程中产生的尺寸收缩问题,建立了筒形件成型过程的有限元模型,基于"生死单元技术"编写了成型过程的温度场、应力场仿真分析命令流,对筒形件熔融沉积成型过程进行了热力耦合数值模拟,探讨了3D打印及冷却过程中筒形件的尺寸收缩机理。结果表明,筒形件在径向的温度梯度分布很不均匀,且等效应力较大; 而轴向的温度梯度分布较为均匀,等效应力较径向小。径向和轴向温度梯度的差异导致筒形件在径向收缩大、轴向变形小。
  • 图  1  熔融沉积成型筒形件

    图  2  熔融沉积成形筒形件的有限元模型

    图  3  FDM成型过程热力耦合有限元模拟流程图

    图  4  成型件成型及冷却过程温度分布云图

    图  5  极坐标系下成型结束时刻模型温度梯度云图

    图  6  模型Mises等效应力分布云图

    图  7  筒形件纵剖面内等效应力分析单元节点的选取路径

    图  8  成型结束时刻不同路径等效应力分布曲线

    图  9  模型纵剖面位移变形云图

    图  10  冷却120 s后模型位移变形云图

    表  1  筒形件尺寸理论值与实验值对比

    名称 理论值/mm 实验值/mm 尺寸相对变化量/%
    高度 3 2.99 0.33
    内径 5 4.822 3.56
    外径 9 8.883 1.3
    下载: 导出CSV

    表  2  PLA材料参数

    温度/℃ 47.5 54.9 60.3 109.3 134.9 145.6 152.0 172.3
    比热容/(J·(kg·K)-1) 1560 1700 1820 1900 2320 4360 2100 1980
    密度/(kg·m-3) 1250 1250 1250 1250 1250 1250 1250 1250
    导热系数/(W·(m·K)-1) 0.231
    弹性模量/MPa 3500
    泊松比 0.35
    热膨胀系数/(K-1) 1.3 ×10-5
    下载: 导出CSV

    表  3  钢化玻璃底板材料热物理参数

    比热容/(J·(kg·K)-1) 密度/(kg·m-3) 导热系数/(W·(m·K)-1) 弹性模量/MPa 泊松比 热膨胀系数/(K-1)
    750 2 500 1.09 72 000 0.2 9×10-6
    下载: 导出CSV
  • [1] 李彬, 李子杰, 顾海, 等.化学处理对熔融沉积成型件力学性能的影响[J].机械科学与技术, 2020, 39(1):144-148 doi: 10.13433/j.cnki.1003-8728.20190084

    LI B, LI Z J, GU H, et al. Effect of chemical treatment on mechanical properties of fused deposition modeled parts[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1):144-148 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190084
    [2] NORDIN N A B, JOHAR M A B, IBRAHIM M H I B, et al. Advances in high temperature materials for additive manufacturing[J]. IOP Conference Series: Materials Science and Engineering. Melaka, 2017, 226:012176 doi: 10.1088/1757-899X/226/1/012176
    [3] YANG L P, LI S J, LI Y, et al. Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts[J]. Journal of Materials Engineering and Performance, 2019, 28(1):169-182 doi: 10.1007/s11665-018-3784-x
    [4] YAMAN U. Shrinkage compensation of holes via shrinkage of interior structure in FDM process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8):2187-2197 doi: 10.1007/s00170-017-1018-2
    [5] NAZAN M A, RAMLI F R, ALKAHARI M R, et al. An exploration of polymer adhesion on 3D printer bed[J]. IOP Conference Series: Materials Science and Engineering, 2017, 210:012062 doi: 10.1088/1757-899X/210/1/012062
    [6] 杨立宁, 单忠德, 戎文娟, 等.金属件熔融堆积3D打印过程热应力场数值模拟[J].铸造技术, 2016, 37(4):753-758 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201604044.htm

    YANG L N, SHAN Z D, RONG W J, et al. Numerical simulation of thermal stress field in 3D printing technology based on metal fused and deposition[J]. Foundry Technology, 2016, 37(4):753-758 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201604044.htm
    [7] El MOUMEN A, TARFAOUI M, LAFDI K. Modelling of the temperature and residual stress fields during 3D printing of polymer composites[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8):1661-1676 doi: 10.1007/s00170-019-03965-y
    [8] 祁冬杰.熔融沉积成型过程温度场和应力场研究[D].昆明: 昆明理工大学, 2017

    QI D J. Study on temperature field and stress field of the fused deposition molding process[D]. Kunming: Kunming University of Science and Technology, 2017 (in Chinese)
    [9] 聂明争, 范勤, 王雄, 等.FDM技术中加热底板样式对翘曲变形的影响研究[J].工程设计学报, 2018, 25(4):420-425, 440 doi: 10.3785/j.issn.1006-754X.2018.04.008

    NIE M Z, FAN Q, WANG X, et al. Study on the effect of heating baseplate style on warpage deformation in FDM technology[J]. Chinese Journal of Engineering Design, 2018, 25(4):420-425, 440 (in Chinese) doi: 10.3785/j.issn.1006-754X.2018.04.008
    [10] 吕宁, 郑健, 赵欣, 等.熔融沉积成形快速成形机加热构建平台的温度场分析及优化[J].中国机械工程, 2019, 30(1):90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201901015.htm

    LÜ N, ZHENG J, ZHAO X, et al. Analysis and optimization of HBP temperature field for FDM rapid forming machines[J]. China Mechanical Engineering, 2019, 30(1):90-95 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201901015.htm
    [11] 张宝庆, 孟凡越, 潘建超, 等.基于热力耦合的FDM成型过程模拟仿真与研究[J].制造业自动化, 2017, 39(7):39-42 doi: 10.3969/j.issn.1009-0134.2017.07.010

    ZHANG B Q, MENG F Y, PAN J C, et al. Simulation and research on FDM molding process based on thermal-force coupling[J]. Manufacturing Automation, 2017, 39(7):39-42 (in Chinese) doi: 10.3969/j.issn.1009-0134.2017.07.010
    [12] ZHANG J, WANG X Z, YU W W, et al. Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling[J]. Materials & Design, 2017, 130:59-68
    [13] YANG H D, ZHANG S. Numerical simulation of temperature field and stress field in fused deposition modeling[J]. Journal of Mechanical Science and Technology, 2018, 32(7):3337-3344 doi: 10.1007/s12206-018-0636-4
    [14] 李艳茹, 任翀, 范丽荣, 等.熔融沉积成型法兰件的温度场模拟与试验研究[J].内蒙古农业大学学报, 2019(5):65-69, 85 https://www.cnki.com.cn/Article/CJFDTOTAL-NMGM201905012.htm

    LI Y R, REN C, FAN L R, et al. Temperature field simulation and experimental study of fused deposition forming flange parts[J]. Journal of Inner Mongolia Agricultural University, 2019, 40(5):65-69, 85 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGM201905012.htm
    [15] XU Y D. Experimental study of ABS material shrinkage and deformation based on fused deposition modeling[J]. MATEC Web of Conferences, 2016, 67:03039 doi: 10.1051/matecconf/20166703039
    [16] 徐巍.快速成型技术之熔融沉积成型技术实践教程[M].上海:上海交通大学出版社, 2015:80-82

    XU W. Practice of fused deposition modeling technology for rapid prototyping technology[M]. Shanghai: Shanghai Jiaotong University Press, 2015:80-82 (in Chinese)
    [17] 陈雪芳, 张义平.控制FDM成型制件误差的方法研究[J].现代制造工程, 2011(11):39-41, 71 doi: 10.3969/j.issn.1671-3133.2011.11.008

    CHEN X F, ZHANG Y P. Research about the ways to control the error of FDM forming workpiece[J]. Modern Manufacturing Engineering, 2011(11):39-41, 71 (in Chinese) doi: 10.3969/j.issn.1671-3133.2011.11.008
    [18] 高金岭.FDM快速成型机温度场及应力场的数值模拟仿真[D].哈尔滨: 哈尔滨工业大学, 2014

    GAO J L. Numerical simulation of temperature field and stress field in FDM rapid prototyping machine[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese)
    [19] 孙建.熔融沉积成型的自适应分层算法研究及成型过程数值模拟[D].天津: 天津大学, 2016

    SUN J. The research of adaptive slicing algorithm of fused deposition modeling and numerical simulation of modeling process[D]. Tianjin: Tianjin University, 2016 (in Chinese)
    [20] 魏士皓, 屠晓伟, 任彬, 等.PLA材料在3D打印过程中的热应力场分析[J].塑料, 2019, 48(2):75-78 https://www.cnki.com.cn/Article/CJFDTOTAL-SULA201902020.htm

    WEI S H, TU X W, REN B, et al. Thermal stress coupling field analysis of PLA materials in 3D printing process[J]. Plastics, 2019, 48(2):75-78 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SULA201902020.htm
    [21] 魏士皓, 屠晓伟, 杨庆华, 等.PLA材料在熔融沉积过程中的温度场分析[J].制造技术与机床, 2019(2):84-89 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC201902019.htm

    WEI S H, TU X W, YANG Q H, et al. Temperature field analysis of the PLA material in the fused deposition modeling process[J]. Manufacturing Technology & Machine Tool, 2019(2):84-89 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC201902019.htm
    [22] 王靖, 李自良, 祁冬杰, 等.ABS材料基于ANSYS生死单元技术的热分析[J].合成材料老化与应用, 2017, 46(2):41-45 https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201702009.htm

    WANG J, LI Z L, QI D J, et al. Thermal analysis of ABS material based on the birth and death element method of ANSYS[J]. Synthetic Materials Aging and Application, 2017, 46(2):41-45 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201702009.htm
    [23] 乔女.ABS塑料3D打印过程中热应力耦合场分析与优化[J].塑料, 2017, 46(5):18-22 https://www.cnki.com.cn/Article/CJFDTOTAL-SULA201705005.htm

    QIAO N. Thermal stress coupling field analysis and printing experiment of ABS material 3D printing based on ANSYS[J]. Plastics, 2017, 46(5):18-22 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SULA201705005.htm
    [24] 中华人民共和国建设部.JGJ 102-2003玻璃幕墙工程技术规范[S].北京: 中国建筑工业出版社, 2004

    Ministry of Construction of the People's Republic of China. JGJ 102-2003 Technical code for glass curtain wall engineering[S]. Beijing: China Building Industry Press, 2004 (in Chinese)
    [25] 胡仁喜, 康士廷.ANSYS15.0热力学有限元分析从入门到精通[M].5版.北京:机械工业出版社, 2016:236-246

    HU R X, KANG S T. ANSYS15.0 thermodynamic finite element analysis from entry to mastery[M]. 5th ed. Beijing: Mechanical Industry Press, 2016:236-246 (in Chinese)
    [26] KOUSIATZA C, CHATZIDAI N, KARALEKAS D. Temperature mapping of 3D printed polymer plates: experimental and numerical study[J]. Sensors (Basel), 2017, 17(3):456
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  85
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-20
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回