留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮缸压力估算与控制仿真研究

黄丰云 刘伟光 魏翼鹰 蒋园健 李豪

黄丰云, 刘伟光, 魏翼鹰, 蒋园健, 李豪. 轮缸压力估算与控制仿真研究[J]. 机械科学与技术, 2021, 40(1): 132-138. doi: 10.13433/j.cnki.1003-8728.20200013
引用本文: 黄丰云, 刘伟光, 魏翼鹰, 蒋园健, 李豪. 轮缸压力估算与控制仿真研究[J]. 机械科学与技术, 2021, 40(1): 132-138. doi: 10.13433/j.cnki.1003-8728.20200013
HUANG Fengyun, LIU Weiguang, WEI Yiying, JIANG Yuanjian, LI Hao. Simulating Pressure Estimation and Control of Wheel Cylinder[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 132-138. doi: 10.13433/j.cnki.1003-8728.20200013
Citation: HUANG Fengyun, LIU Weiguang, WEI Yiying, JIANG Yuanjian, LI Hao. Simulating Pressure Estimation and Control of Wheel Cylinder[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 132-138. doi: 10.13433/j.cnki.1003-8728.20200013

轮缸压力估算与控制仿真研究

doi: 10.13433/j.cnki.1003-8728.20200013
基金项目: 

轻量化汽车底盘关键零部件智能工厂新模式 政府收支分类2159999

轻量化汽车底盘关键零部件智能工厂新模式 预算号21507707999107

详细信息
    作者简介:

    黄丰云(1971-), 副教授, 研究方向为数字化设计与制造, 1378653952@qq.com

  • 中图分类号: TH137

Simulating Pressure Estimation and Control of Wheel Cylinder

  • 摘要: 汽车传统制动系统一般都是采用PWM(Pulse width modulation)控制技术来调节轮缸压力,根据占空比与轮缸压力变化关系控制增、减压。但是通过探究高速开关阀PWM控制特性,发现PWM控制减压有效占空比范围小,难以实现压力精确调控。因此结合查表法增压、阶梯法减压,提出了一种分段控制方法。并且将轮缸压力估算算法应用到压力控制中,作为压力控制环反馈。通过搭建Simulink/AMEsim联合仿真模型对压力估算算法和压力控制算法进行了验证,证明了估算算法的准确性和压力控制算法的可行性、优越性。
  • 图  1  盘式制动器制动轮缸结构简图

    图  2  1/4液压控制单元联合仿真模型

    图  3  制动轮缸P-V特性曲线

    图  4  轮缸压力估算算法结构图

    图  5  轮缸压力估算算法模型

    图  6  电磁阀PWM控制轮缸压力特性曲线

    图  7  基于轮缸压力估算的轮缸压力控制算法流程

    图  8  压力控制状态切换

    图  9  轮缸压力估算算法验证

    图  10  梯形波目标压力曲线仿真结果

    图  11  正弦波目标压力曲线仿真结果

    图  12  三角波目标压力曲线仿真结果

    表  1  流量压差特性测试

    ΔP Q
    0.037 0.017
    0.050 0.022
    0.071 0.014
    0.178 0.042
    0.199 0.060
    0.329 0.115
    0.581 0.158
    0.810 0.212
    0.910 0.207
    1.011 0.237
    1.064 0.293
    1.285 0.286
    1.523 0.343
    1.646 0.339
    1.777 0.369
    1.842 0.387
    2.052 0.394
    2.200 0.445
    2.273 0.467
    2.506 0.495
    2.667 0.510
    2.835 0.495
    2.921 0.557
    3.099 0.546
    3.190 0.528
    3.281 0.542
    3.869 0.596
    4.292 0.656
    4.865 0.717
    4.985 0.710
    5.356 0.784
    5.611 0.789
    6.007 0.812
    6.280 0.820
    6.566 0.855
    6.709 0.867
    6.851 0.849
    7.150 0.881
    7.249 0.892
    7.301 0.876
    7.456 0.897
    7.771 0.906
    8.250 0.933
    9.151 0.990
    9.361 1.007
    下载: 导出CSV

    表  2  不同压差下增压阀占空

    ΔP/bar 0 1 2 3 4 5
    τ 0 0.12 0.24 0.36 0.48 0.60
    下载: 导出CSV
  • [1] 孟爱红. ESC液压执行机构压力精确控制研究[D].北京: 清华大学, 2014

    MENG A H. Research on the precise pressure control of hydraulic actuator of electronic stability control system[D]. Beijing: Tsinghua University, 2014 (in Chinese)
    [2] LI Q Y, Beyer K W, Zheng Q. A model-based brake pressure estimation strategy for traction control system[R]. Technical Paper 2001-01-0595, 2001
    [3] 余卓平, 余萌里, 熊璐.基于AMESim的汽车电子稳定系统轮缸压力精确控制研究[J].汽车技术, 2013(2):19-22 doi: 10.3969/j.issn.1000-3703.2013.02.007

    YU Z P, YU M L, XIONG L. Modeling and controlling of vehicle ESP wheel cylinder pressure based on AMESim[J]. Automobile Technology, 2013(2):19-22 (in Chinese) doi: 10.3969/j.issn.1000-3703.2013.02.007
    [4] 孙成伟, 初亮, 郭建华, 等.电磁阀阶梯减压控制方法[J].农业机械学报, 2017, 48(12):380-385 doi: 10.6041/j.issn.1000-1298.2017.12.047

    SUN C W, CHU L, GUO J H, et al. Stepped decompression control method of solenoid valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12):380-385 (in Chinese) doi: 10.6041/j.issn.1000-1298.2017.12.047
    [5] 吴学杰, 冯智勇, 裴晓飞, 等.基于SOA算法的EHB制动系统压力控制研究[J].自动化与仪表, 2017, 32(11):49-55 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY201711012.htm

    WU X J, FENG Z Y, PEI X F, et al. Research on pressure control of EHB braking system based on SOA algorithm[J]. Automation & Instrumentation, 2017, 32(11):49-55 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY201711012.htm
    [6] HAN W, XIONG L, YU Z P. Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties[J]. Mechanical Systems and Signal Processing, 2019, 131:703-727 doi: 10.1016/j.ymssp.2019.02.009
    [7] 余卓平, 韩伟, 熊璐.集成式电子液压制动系统液压力变结构控制[J].汽车工程, 2017, 39(1):52-60 doi: 10.3969/j.issn.2095-1469.2017.01.08

    YU Z P, HAN W, XIONG L. Variable structure control for hydraulic pressure in integrated-electro-hydraulic brake system[J]. Automotive Engineering, 2017, 39(1):52-60 (in Chinese) doi: 10.3969/j.issn.2095-1469.2017.01.08
    [8] 石志伟, 卢天义.基于高速开关阀的制动气室压力MAP控制与仿真[J].农业装备与车辆工程, 2016, 54(8):31-33, 37 doi: 10.3969/j.issn.1673-3142.2016.08.008

    SHI Z W, LU T Y. MAP control and simulation of the brake chamber pressure based on high-speed on/off valve[J]. Agricultural Equipment & Vehicle Engineering, 2016, 54(8):31-33, 37 (in Chinese) doi: 10.3969/j.issn.1673-3142.2016.08.008
    [9] 余卓平, 王婧佳, 熊璐, 等.电液制动系统液压力控制[J].控制理论与应用, 2016, 33(7):897-902

    YU Z P, WANG J J, XIONG L, et al. Hydraulic pressure control of electro-hydraulic brake system[J]. Control Theory & Applications, 2016, 33(7):897-902 (in Chinese)
    [10] 徐向禹.汽车电子稳定系统液压控制单元特性分析与优化控制[D].长春: 吉林大学, 2018

    XU X Y. Characteristic analysis and optimization control of hydraulic control unit of vehicle electronic stability system[D]. Changchun: Jilin University, 2018 (in Chinese)
    [11] 刘刚.乘用车ESC分层控制策略及液压执行单元控制算法的研究[D].长春: 吉林大学, 2018

    LIU G. Study on ESC hierarchical control strategy and control method of HCU for passenger car[D].Changchun: Jilin University, 2018 (in Chinese)
    [12] 刘刚, 徐文博, 靳立强.轮毂电机驱动电动汽车液压执行单元的压力估计与控制方法研究[J].汽车工程, 2019, 41(10):1138-1144 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910005.htm

    LIU G, XU W B, JIN L Q. A study on pressure estimation and control method for hydraulic actuation unit of hub-motor-driven electric vehicle[J]. Automotive Engineering, 2019, 41(10):1138-1144 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910005.htm
    [13] 李静, 沙宏亮, 王伯平, 等.基于液压制动轮缸压力估算的车辆电子稳定性程序控制算法[J].吉林大学学报, 2010, 40(6):1478-1481 https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201006004.htm

    LI J, SHA H L, WANG B P, et al. Control algorithm for vehicle electronic stability program based on brake wheel cylinder hydraulic pressure estimation[J]. Journal of Jilin University, 2010, 40(6):1478-1481 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201006004.htm
    [14] JIANG G R, MIAO X L, WANG Y H, et al. Real-time estimation of the pressure in the wheel cylinder with a hydraulic control unit in the vehicle braking control system based on the extended Kalman filter[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(10):1340-1352 doi: 10.1177/0954407016671685
    [15] 王冬良, 陈南, 刘远伟.基于PWM控制的ESP高速开关阀动力学特性研究与仿真[J].机械设计与制造, 2015(12):87-90 doi: 10.3969/j.issn.1001-3997.2015.12.025

    WANG D L, CHEN N, LIU Y W. Dynamics research and simulation of high-speed on-off solenoid value of automotive electronic stability program based on PWM control[J]. Machinery Design & Manufacture, 2015(12):87-90 (in Chinese) doi: 10.3969/j.issn.1001-3997.2015.12.025
    [16] 韩勇, 赵元平, 魏立新.汽车防抱死系统气压电磁调节器试验台在检验中的技术应用[J].汽车实用技术, 2018(3):58-60 https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC201803022.htm

    HAN Y, ZHAO Y P, WEI L X. Automobile anti-lock dead system pneumatic electromagnetic regulator test bed Technical application in inspection[J]. Automobile Applied Technology, 2018(3):58-60 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC201803022.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  142
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-26
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回