留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主轴振动对表面波纹度影响及预测模型分析

陈东菊 李源 李天宝 范晋伟

陈东菊,李源,李天宝, 等. 主轴振动对表面波纹度影响及预测模型分析[J]. 机械科学与技术,2020,39(12):1822-1827 doi: 10.13433/j.cnki.1003-8728.20200006
引用本文: 陈东菊,李源,李天宝, 等. 主轴振动对表面波纹度影响及预测模型分析[J]. 机械科学与技术,2020,39(12):1822-1827 doi: 10.13433/j.cnki.1003-8728.20200006
Chen Dongju, Li Yuan, Li Tianbao, Fan Jinwei. Influence of Spindle Vibrationon Surface Waviness and Prediction Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1822-1827. doi: 10.13433/j.cnki.1003-8728.20200006
Citation: Chen Dongju, Li Yuan, Li Tianbao, Fan Jinwei. Influence of Spindle Vibrationon Surface Waviness and Prediction Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1822-1827. doi: 10.13433/j.cnki.1003-8728.20200006

主轴振动对表面波纹度影响及预测模型分析

doi: 10.13433/j.cnki.1003-8728.20200006
基金项目: 国家自然科学基金项目(51875005,51475010)资助
详细信息
    作者简介:

    陈东菊(1980−),教授,博士生导师,研究方向为超精密数控加工与自动化装备,djchen@bjut.edu.cn

  • 中图分类号: TH16

Influence of Spindle Vibrationon Surface Waviness and Prediction Model

  • 摘要: 机床加工精度的影响因素中,静压主轴系统的动态特性引起的振动是加工表面波纹度产生的重要因素。基于主轴振动信息建立波纹度的生成模型,求解得到6个影响因素的灵敏度中径向轴承的位置是影响表面波纹度的主要因素。建立评价体系,通过相关法来评估生成模型与实际加工表面波纹结果之间的关系,得到了高于0.45的相关系数。最后利用功率谱密度提取主轴系统的频谱特性,发现主轴振动是影响加工精度的主要因素。
  • 图  1  主轴系统的结构

    图  2  主轴系统的平衡模型

    图  3  主轴系统的动态模型

    图  4  轮廓仪PGI1240所测得的工件波纹结果

    图  5  不同转速下仿真和测量的波纹

    图  6  两个加工过程的相关度

    图  7  波纹结果的频谱特性

    表  1  主轴系统的参数

    主轴系统的质量300 kg
    径向刚度KraKrb 100 N/μm
    推力轴承刚度Kt 300 N/μm
    距离理想中心的偏心距 1 μm
    主轴半径R 120 mm
    工作台半径 500 mm
    下载: 导出CSV

    表  2  影响因素的灵敏度比

    因素L4-LcKxKzCxCzMω
    初始值0.2580.2580.2580.2580.2580.258
    10倍0.3260.2610.2620.2590.2650.26
    误差/%261.11.50.381.90.77
    下载: 导出CSV
  • [1] Hung J P, Lai Y L, Luo T L, et al. Analysis of the machining stability of a milling machine considering the effect of machine frame structure and spindle bearings: experimental and finite element approaches[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2393-2405 doi: 10.1007/s00170-013-4848-6
    [2] Huang P, Lee W B, Chen C Y. Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 48-56 doi: 10.1016/j.ijmachtools.2015.04.007
    [3] Marsh E, Arneson D A, Van Doren M J, et al. The effects of spindle dynamics on precision flycutting[C]//The Twentieth Annual Meeting of the American Society for Precision Engineering.The Pennsylvania State University, 21 Reber Building, University Park, PA 16802, USA, 2005
    [4] Maeda O, Cao Y Z, Altintas Y. Expert spindle design system[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 537-548 doi: 10.1016/j.ijmachtools.2004.08.021
    [5] 万德安, 袁建畅, 杨公仆. 导轨磨床加工工件表面波度成因的探索[J]. 西安交通大学学报, 1986, 20(2): 99-108

    Wan D A, Yuan J C, Yang G P. Investigation on the cause of formation of work-piece surface waviness during machining on slideway grinding machines[J]. Journal of Xi'an Jiaotong University, 1986, 20(2): 99-108 (in Chinese)
    [6] 曹宏瑞, 何正嘉. 机床—主轴耦合系统动力学建模与模型修正[J]. 机械工程学报, 2012, 48(3): 88-94 doi: 10.3901/JME.2012.03.088

    Cao H R, He Z J. Dynamic modeling and model updating of coupled systems between machine tool and its spindle[J]. Journal of Mechanical Engineering, 2012, 48(3): 88-94 (in Chinese) doi: 10.3901/JME.2012.03.088
    [7] Martin D L, Tabenkin A N, Parsons F G. Precision spindle and bearing error analysis[J]. International Journal of Machine Tools and Manufacture, 1995, 35(2): 187-193 doi: 10.1016/0890-6955(94)P2372-M
    [8] Kim D K, Chang I C, Kim S W. Microscopic topographical analysis of tool vibration effects on diamond turned optical Surfaces[J]. Precision Engineering, 2002, 26(2): 168-174 doi: 10.1016/S0141-6359(01)00115-5
    [9] Lin S C, Chang M F. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning[J]. International Journal of Machine Tools and Manufacture, 1998, 38(7): 763-782 doi: 10.1016/S0890-6955(97)00073-4
    [10] 王伟, 庄文浩, 陶文坚. 采用测量不确定度的复杂自由曲面表面质量测试与评价[J]. 西安交通大学学报, 2016, 51(8): 20-25

    Wang Wi, Zhuang W H, Tao W J. Measurement and evaluation method for quality of complex free-form surface based on uncertainty of measurement[J]. Journal of Xi'an Jiaotong University, 2016, 51(8): 20-25 (in Chinese)
    [11] Jiang L, Yahya E, Ding G F, et al. The research of surface waviness control method for 5-axis flank milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69(1): 835-847
    [12] Zhang S J, To S, Wang H T. A theoretical and experimental investigation into five-DOF dynamic characteristics of an aerostatic bearing spindle in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2013, 71: 1-10 doi: 10.1016/j.ijmachtools.2013.03.001
    [13] Movahhedy M R, Mosaddegh P. Prediction of chatter in high speed milling including gyroscopic effects[J]. International Journal of Machine Tools and Manufacture, 2006, 46(9): 996-1001 doi: 10.1016/j.ijmachtools.2005.07.043
    [14] Khanfir H, Bonis M, Revel P. Improving waviness in ultra precision turning by optimizing the dynamic behavior of a spindle with magnetic bearings[J]. International Journal of Machine Tools and Manufacture, 2005, 45(7-8): 841-848 doi: 10.1016/j.ijmachtools.2004.11.007
    [15] An C H, Zhang Y, Xu Q, et al. Modeling of dynamic characteristic of the aerostatic bearing spindle in an ultra-precision fly cutting machine[J]. International Journal of Machine Tools and Manufacture, 2010, 50(4): 374-385 doi: 10.1016/j.ijmachtools.2009.11.003
    [16] Li J S, Huang M, Liu P K. Analysis and experimental verification of dynamic characteristics of air spindle considering varying stiffness and damping of radial bearings[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8): 2939-2950 doi: 10.1007/s00170-019-04121-2
    [17] Chen D J, Cui X X, Pan R, et al. A prediction model of the surface topography due to the unbalance of the spindle system in ultra-precision fly-cutting machining[J]. Advances in Mechanical Engineering, 2018, 10(1): 168781401774714
    [18] 赵斌. 导轨表面粗糙度功能参数表征及其对摩擦特性的影响[D]. 济南: 山东大学, 2017.

    Zhao B. Characteristic of functional parameters of surface roughness on guide way and its' effects on tribological properties[D]. Ji'nan: Shandong University, 2017 (in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  46
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-05
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回