留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交腕结成形的拓扑与几何形态组合指标研究

陈君荣 杭鲁滨 黄晓波 汪千升 刘子玉 白乐乐

陈君荣,杭鲁滨,黄晓波, 等. 交腕结成形的拓扑与几何形态组合指标研究[J]. 机械科学与技术,2020,39(12):1937-1943 doi: 10.13433/j.cnki.1003-8728.20190353
引用本文: 陈君荣,杭鲁滨,黄晓波, 等. 交腕结成形的拓扑与几何形态组合指标研究[J]. 机械科学与技术,2020,39(12):1937-1943 doi: 10.13433/j.cnki.1003-8728.20190353
Chen Junrong, Hang Lubin, Huang Xiaobo, Wang Qiansheng, Liu Ziyu, Bai Lele. Exploring Topological and Geometric Combination Indexfor Overhand Knot Formation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1937-1943. doi: 10.13433/j.cnki.1003-8728.20190353
Citation: Chen Junrong, Hang Lubin, Huang Xiaobo, Wang Qiansheng, Liu Ziyu, Bai Lele. Exploring Topological and Geometric Combination Indexfor Overhand Knot Formation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1937-1943. doi: 10.13433/j.cnki.1003-8728.20190353

交腕结成形的拓扑与几何形态组合指标研究

doi: 10.13433/j.cnki.1003-8728.20190353
基金项目: 国家自然科学基金项目(51475050)资助
详细信息
    作者简介:

    陈君荣(1996−),硕士研究生,研究方向为机构学与机器人学,ChenJR1310@163.com

    通讯作者:

    杭鲁滨,教授,硕士生导师,博士,hanglb@126.com

  • 中图分类号: TH122

Exploring Topological and Geometric Combination Indexfor Overhand Knot Formation

  • 摘要: 打结过程绳带拓扑与几何形态控制是新型打结机构研制的关键问题。基于纽结理论Reidemeister基本变换提出交腕结成形绳带的等效操作和成形原理,构建以非完整空心齿轮盘驱动绳带旋转缠绕、弧形立面凸轮支撑绳带、可动支臂夹爪拾取固定绳带的新型打结机构。提出以绳带交叉点与绳带悬链线极值点构造的拓扑与几何形态组合指标,将绳带成结过程划分为4个关键阶段,利用悬链线理论求解各阶段边界瞬态绳带几何形态。实验结果表明,对边界瞬态绳带拓扑与几何形态控制,实现了绳带在新型打结机构成结过程中的形态保持。
  • 图  1  交腕结实物模型

    图  2  交腕结交叉点形成过程拓扑结构分析

    图  3  新型打结机构成形构思

    图  4  新型打结机机构模型

    图  5  绳带打结过程示意图

    图  6  运动绳带状态抽象模型

    图  7  绳带位置及受力分析

    图  8  空间坐标系示意图

    图  9  各打结阶段特征瞬态绳带空间悬链线表示

    图  10  打结试验过程

    表  1  绳带成结运动阶段划分表

    绳带打结阶段组合划分指标绳带拓扑结构表示核心机构运动示意图
    第一阶段:
    起始状态
    非完整空心齿轮盘缺口与固定板缺口重合;交叉点数为0、极值点数为1,组合指标为$In{d_C} = \left[ {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right]$
    第二阶段:
    无缠绕状态
    缠绕绳带转至即将与中心绳带接触;交叉点数为1、极值点数为1,组合指标为$In{d_C} = \left[ {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right]$
    第三阶段:
    半缠绕状态
    缠绕绳带与中心绳带接触;交叉点数为2、极值点数为2,组合指标为$In{d_C} = \left[ {\begin{array}{*{20}{c}} 2 \\ 2 \end{array}} \right]$
    第四阶段:
    全缠绕状态
    齿轮旋转一周,缠绕绳带绕中心绳带旋转并穿越绳圈;交叉点数为3、极值点数为2,组合指标为$In{d_C} = \left[ {\begin{array}{*{20}{c}} 3 \\ 2 \end{array}} \right]$
    下载: 导出CSV

    表  2  绳带打结阶段特征瞬态已知条件

    运动阶段组合指标支撑点坐标及各段悬链线长度$S$/mm
    (几何形态)
    悬链平面旋转角度/(°)
    (拓扑形态)
    第一阶段$\left[ {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right]$$A\left( {0,18,0} \right)$,$B\left( {7.43,9,36.99} \right)$;${S_{AB}} = 42$${\varphi _{AB}}{\rm{ = }}78.5^\circ $
    第二阶段$\left[ {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right]$$A\left( {0,18,0} \right)$,$B\left( {28.31,9,42.74} \right)$,$C\left( {19.25,11.24,29.14} \right)$;${S_{AB}} = 56$${\varphi _{AB}}{\rm{ = 56}}{\rm{.5}}^\circ $
    第三阶段$\left[ {\begin{array}{*{20}{c}} 2 \\ 2 \end{array}} \right]$$A\left( {0,18,0} \right)$,$B\left( {36.99,9,29.14} \right)$,$C\left( {19.25,11.24,29.14} \right)$,${C_0}\left( {19.25,0,29.14} \right)$;${S_{AC}} = 38$,${S_{CB}} = 19$${\varphi _{AC}} = 56.5^\circ $${\varphi _{CB}} = 0^\circ $
    第四阶段$\left[ {\begin{array}{*{20}{c}} 3 \\ 2 \end{array}} \right]$$A\left( {0,18,0} \right)$,$B\left( {7.43,9,36.99} \right)$,$C\left( {19.25,11.24,29.14} \right)$,$D\left( {22.45,10.7,29.14} \right)$,$E\left( {20.92,10.2,26.74} \right)$${E_0}\left( {20.92,0,26.74} \right)$;${S_{AC}} = 38$,${S_{EB}} = 18$${\varphi _{AC}} = 56.5^\circ $${\varphi _{EB}} = 142.8^\circ $
    下载: 导出CSV
  • [1] 徐广明, 陶永红. 打结器的应用与发展简论[J]. 中国高新技术企业, 2007,(12): 97 doi: 10.3969/j.issn.1009-2374.2007.12.064

    Xu G M, Tao Y H. A simple comment on application and development of knotter[J]. China High-Tech Enterprises, 2007,(12): 97 (in Chinese) doi: 10.3969/j.issn.1009-2374.2007.12.064
    [2] 姜伯驹. 绳圈的数学[M]. 辽宁大连: 大连理工大学出版社, 2011.

    Jiang B J. Mathematics of string figures[M]. Liaoning Dalian: Dalian University of Technology Press, 2011 (in Chinese).
    [3] Chiodo M. An introduction to braid theory[D]. Melbourne: University of Melbourne, 2005.
    [4] Yamakawa Y, Namiki A, Ishikawa M, et al. Planning of knotting based on manipulation skills with consideration of robot mechanism/motion and its realization by a robot hand system[J]. Symmetry, 2017, 9(9): 194
    [5] Wang W F, Balkcom D. Knot grasping, folding, and re-grasping[J]. The International Journal of Robotics Research, 2018, 37(2-3): 378-399
    [6] Kudoh S, Gomi T, Katano R, et al. In-air knotting of rope by a dual-arm multi-finger robot[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 6202-6207.
    [7] Wang W F, Bell M P, Balkcom D, et al. Towards arranging and tightening knots and unknots with fixtures[M]//Akin H L, Amato N M, Isler V, et al. Algorithmic Foundations of Robotics XI. Cham: Springer, 2015.
    [8] Van Vinh T, Tomizawa T, Kudoh S, et al. Knotting task execution based a hand-rope relation[J]. Advanced Robotics, 2017, 31(11): 570-579
    [9] 黄松檀, 胡冲, 吕俊杰, 等. 新型打结装置打结过程的关键参数研究[J]. 机电工程, 2018, 35(3): 261-265 doi: 10.3969/j.issn.1001-4551.2018.03.009

    Huang S T, Hu C, Lü J J, et al. Key parameters of knotting process of new knot tying device[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(3): 261-265 (in Chinese) doi: 10.3969/j.issn.1001-4551.2018.03.009
    [10] He L, Zhang Q, Charvet H J, et al. A knot-tying end-effector for robotic hop twining[J]. Biosystems Engineering, 2013, 114(3): 344-350
    [11] Zhang Q, He L, Charvet H J. Knot-tying device and method: US, 8573656B1[P]. 2013-11-05.
    [12] Onda H, Kudoh S, Suehiro T, et al. Handling and describing string-tying operations based on metrics using segments between crossing sections[J]. IEEE Robotics and Automation Letters, 2016, 1(1): 375-382
    [13] Cella P. Reexamining the catenary[J]. The College Mathematics Journal, 1999, 30(5): 391-393
    [14] Cella P. Methodology for exact solution of catenary[J]. Journal of Structural Engineering, 1999, 125(12): 1451-1453
    [15] 于凤军, 崔金玲, 李立新. 利用平衡原理导出悬链线方程[J]. 工科物理, 1998, 8(4): 14-16

    Yu F J, Cui J L, Li L X. A method of obtaining the equation of the suspension chain[J]. Physics and Engineering, 1998, 8(4): 14-16 (in Chinese)
    [16] 李哲, 王宇锐, 汤剑, 等. 基于悬链线理论的海带打结原理研究[J]. 工程设计学报, 2011, 18(4): 260-264 doi: 10.3785/j.issn.1006-754X.2011.04.006

    Li Z, Wang Y R, Tang J, et al. Research of kelp-knot principle based on catenary theory[J]. Journal of Engineering Design, 2011, 18(4): 260-264 (in Chinese) doi: 10.3785/j.issn.1006-754X.2011.04.006
    [17] Such M, Jimenez-Octavio J R, Carnicero A, et al. An approach based on the catenary equation to deal with static analysis of three dimensional cable structures[J]. Engineering Structures, 2009, 31(9): 2162-2170
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  63
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-24
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回