留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混联机器人UD-CFRP铣削过程切削力及加工质量分析

秦旭达 张艳 李皓 李士鹏 牛文铁 尚帅

秦旭达,张艳,李皓, 等. 混联机器人UD-CFRP铣削过程切削力及加工质量分析[J]. 机械科学与技术,2020,39(12):1898-1905 doi: 10.13433/j.cnki.1003-8728.20190345
引用本文: 秦旭达,张艳,李皓, 等. 混联机器人UD-CFRP铣削过程切削力及加工质量分析[J]. 机械科学与技术,2020,39(12):1898-1905 doi: 10.13433/j.cnki.1003-8728.20190345
Qin Xuda, Zhang Yan, Li Hao, Li Shipeng, Niu Wentie, Shang Shuai. Analysis of Cutting Force and Quality for Hybrid Robot in UD-CFRP Milling[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1898-1905. doi: 10.13433/j.cnki.1003-8728.20190345
Citation: Qin Xuda, Zhang Yan, Li Hao, Li Shipeng, Niu Wentie, Shang Shuai. Analysis of Cutting Force and Quality for Hybrid Robot in UD-CFRP Milling[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12): 1898-1905. doi: 10.13433/j.cnki.1003-8728.20190345

混联机器人UD-CFRP铣削过程切削力及加工质量分析

doi: 10.13433/j.cnki.1003-8728.20190345
基金项目: 国家科技重大专项(2017ZX04013001)、国家自然科学基金青年项目(51705358)及天津市自然科学基金项目(16JCZDJC38300)资助
详细信息
    作者简介:

    秦旭达(1973−),教授,博士,研究方向为飞机数字化装配技术和系统,难加工材料加工新技术,qxd@tju.edu.cn

    通讯作者:

    李皓,讲师,博士,haolitju@tju.edu.cn

  • 中图分类号: TG156

Analysis of Cutting Force and Quality for Hybrid Robot in UD-CFRP Milling

  • 摘要: 随着碳纤维增强复合材料(Carbon fiber reinforced plastic, CFRP)在航空航天领域应用比例的增多,其切削加工也逐渐成为研究热点。基于TriMule混联机器人加工平台,通过螺旋立铣刀CFRP铣削实验,识别了不同切削条件下对应的切削力系数,发现CFRP铣削过程中的径向、切向切削力系数可以表示为纤维切削角的三角函数。结合不同切削参数的CFRP铣削实验对所提出的铣削力模型的准确性进行验证,分析了纤维切削角对CFRP铣槽加工质量的影响规律。在CFRP铣削加工中,毛刺按照其形成机理可以分为Ⅰ型和Ⅱ型两种,其中Ⅰ型毛刺由纤维在切削平面的弯曲变形引起,Ⅱ型毛刺由纤维在切削平面和垂直于切削平面的弯曲变形引起。试验结果表明,Ⅰ型毛刺长度随起始纤维切削角βs的增大而减小,Ⅱ型毛刺长度随截止纤维切削角βe的增大而增大。
  • 图  1  纤维切削角β随刀具转角Φ的变化规律(θ=0°)

    图  2  不同刀具转角处纤维切削角随纤维方向角的变化规律

    图  3  CFRP铣削过程示意图

    图  4  铣削加工试验现场图

    图  5  CFRP铣削实验方案

    图  6  不同纤维方向角UD-CFRP铣边加工切削力系数随刀具转角的变化规律 (n=3500 r/min, f=0.015 mm/齿, aw=2.5 mm)

    图  7  UD-CFRP铣边加工切削力系数拟合结果与试验结果对比

    图  8  UD-CFRP铣边加工切削力测量结果与理论结果对比(n = 3 500 r/min, f = 0.015 mm/齿, aw = 2.5 mm)

    图  9  CFRP铣槽过程切削力仿真结果与实测结果对比图(n = 3 500 r/min, aw = 5 mm, θ= 450)

    图  10  CFRP铣槽加工毛刺分布图(n=3500 r/min,f=0.015 mm/齿,θ=75°)

    图  11  不同纤维方向UD-CFRP铣槽加工毛刺分布 (n=3500 r/min,f=0.015 mm/齿)

    图  12  不同纤维方向CFRP铣槽加工Ⅰ型毛刺长度、切削力系数以及表面形貌随起始纤维切削角βs的变化规律图

    图  13  不同纤维方向CFRP铣槽加工Ⅱ型毛刺长度、表面形貌随截止纤维切削角βe的变化规律图

    表  1  CFRP铣边实验加工参数

    纤维方向角/
    (°)
    主轴
    转速n/
    (r·min−1)
    每齿进
    给量f /
    (mm·齿−1)
    进给
    速度/
    (mm·min−1)
    轴向切削
    深度ap/
    mm
    切削
    宽度aw/
    mm
    0~16535000.01521012.5
    下载: 导出CSV

    表  2  不同纤维方向CFRP铣边加工纤维切削角以及对应的铣削力系数辨识结果(Φ=45°)

    θ/(°)β/(°)Kt/(N·mm−2)Kr/(N·mm−2)
    0 45 421.9 1360
    15 30 1422 4581
    30 15 2356 7594
    45 0 2689 8665
    60 165 3468 11800
    75 150 4024 12970
    90 135 4323 13930
    105 120 3347 10380
    120 105 2646 8203
    135 90 1831 5676
    150 75 912 2827
    165 60 689.4 2137
    下载: 导出CSV
  • [1] Li H, Qin X D, Huang T, et al. Machining quality and cutting force signal analysis in UD-CFRP milling under different fiber orientation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(9-12): 2377-2387 doi: 10.1007/s00170-018-2312-3
    [2] Xia T, Kaynak Y, Arvin C, et al. Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material[J]. The International Journal of Advanced Manufacturing Technology, 2015, 82(1-4): 605-616
    [3] Voss R, Seeholzer L, Kuster F, et al. Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP[J]. CIRP Journal of Manufacturing Science and Technology, 2017, 18: 75-91 doi: 10.1016/j.cirpj.2016.10.002
    [4] Soussia A B, Mkaddem A, El Mansori M. Rigorous treatment of dry cutting of FRP - Interface consumption concept: a review[J]. International Journal of Mechanical Sciences, 2014, 83: 1-29 doi: 10.1016/j.ijmecsci.2014.03.017
    [5] 李皓. 基于能量法CFRP切削机理与加工表面质量表征方法研究[D]. 天津: 天津大学, 2016.

    Li H. Study on energy based cutting mechanism and surface quality evaluation method of CFRP machining[D]. Tianjin: Tianjin University, 2016 (in Chinese).
    [6] 郝大贤, 王伟, 王琦珑, 等. 复合材料加工领域机器人的应用与发展趋势[J]. 机械工程学报, 2019, 55(3): 1-17 doi: 10.3901/JME.2019.03.001

    Hao D X, Wang W, Wang Q L, et al. Applications and development trend of robotics in composite material process[J]. Journal of Mechanical Engineering, 2019, 55(3): 1-17 (in Chinese) doi: 10.3901/JME.2019.03.001
    [7] Sheikh-Ahmad J, Twomey J, Kalla D, et al. Multiple regression and committee neural network force prediction models in milling FRP[J]. Machining Science and Technology, 2007, 11(3): 391-412
    [8] Mathivanan N R, Mahesh B S, Shetty H A. An experimental investigation on the process parameters influencing machining forces during milling of carbon and glass fiber laminates[J]. Measurement, 2016, 91: 39-45 doi: 10.1016/j.measurement.2016.04.077
    [9] Karpat Y, Bahtiyar O, Değer B. Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates[J]. International Journal of Machine Tools and Manufacture, 2012, 56: 79-93 doi: 10.1016/j.ijmachtools.2012.01.001
    [10] Rimpault X, Chatelain J F, Klemberg-Sapieha J E, et al. Tool wear and surface quality assessment of CFRP trimming using fractal analyses of the cutting force signals[J]. CIRP Journal of Manufacturing Science and Technology, 2017, 16: 72-80 doi: 10.1016/j.cirpj.2016.06.003
    [11] Gara S, Tsoumarev O. Effect of tool geometry on surface roughness in slotting of CFRP[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1-4): 451-461 doi: 10.1007/s00170-015-8185-9
    [12] Erkan Ö, Işık B, Çiçek A, et al. Prediction of damage factor in end milling of glass fibre reinforced plastic composites using artificial neural network[J]. Applied Composite Materials, 2013, 20(4): 517-536 doi: 10.1007/s10443-012-9286-3
    [13] Hintze W, Hartmann D, Schütte C. Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs) - an experimental study[J]. Composites Science and Technology, 2011, 71(15): 1719-1726 doi: 10.1016/j.compscitech.2011.08.002
    [14] Wang C Y, Liu G Y, An Q L, et al. Occurrence and formation mechanism of surface cavity defects during orthogonal milling of CFRP laminates[J]. Composites Part B: Engineering, 2017, 109: 10-22 doi: 10.1016/j.compositesb.2016.10.015
    [15] Li M J, Huang M J, Jiang X G, et al. Study on burr occurrence and surface integrity during slot milling of multidirectional and plain woven CFRPs[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4): 163-173 doi: 10.1007/s00170-018-1937-6
    [16] Wang F J, Yin J W, Ma J W, et al. Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 3107-3120 doi: 10.1007/s00170-017-0023-9
    [17] Haddad M, Zitoune R, Eyma F, et al. Machinability and surface quality during high speed trimming of multi directional CFRP[J]. International Journal of Machining and Machinability of Materials, 2013, 13(2-3): 289-310
    [18] Schmitz T L, Smith K S. Machining dynamics[M]. Boston, MA: Springer, 2009.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  58
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2020-12-05

目录

    /

    返回文章
    返回