留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型软体驱动器的设计与研究

李明鑫 宁萌 陈海卫

李明鑫, 宁萌, 陈海卫. 一种新型软体驱动器的设计与研究[J]. 机械科学与技术, 2021, 40(1): 33-39. doi: 10.13433/j.cnki.1003-8728.20190344
引用本文: 李明鑫, 宁萌, 陈海卫. 一种新型软体驱动器的设计与研究[J]. 机械科学与技术, 2021, 40(1): 33-39. doi: 10.13433/j.cnki.1003-8728.20190344
LI Mingxin, NING Meng, CHEN Haiwei. Design and Research of Novel Soft Actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 33-39. doi: 10.13433/j.cnki.1003-8728.20190344
Citation: LI Mingxin, NING Meng, CHEN Haiwei. Design and Research of Novel Soft Actuator[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 33-39. doi: 10.13433/j.cnki.1003-8728.20190344

一种新型软体驱动器的设计与研究

doi: 10.13433/j.cnki.1003-8728.20190344
基金项目: 

国家自然科学基金项目 51705201

2018年中国博士后科学基金第63批面上项目 2018M630515

详细信息
    作者简介:

    李明鑫(1996-), 硕士研究生, 研究方向为软体机器人, 2990295675@qq.com

    通讯作者:

    宁萌, 副教授, 硕士生导师, 博士, 1613722479@qq.com

  • 中图分类号: TP241

Design and Research of Novel Soft Actuator

  • 摘要: 现有软体机器人的驱动器结构大多为纤维增强型和多腔体型,针对此类软体驱动器存在的问题,开展新型软体驱动器的研究。首先介绍了新型软体驱动器结构的设计思路,为进一步研究结构的合理性,进行了基于Yeoh模型的软体驱动器弯曲特性理论的分析,得到曲率半径与充气压强之间的数学模型,并通过软体驱动器的制作和实验平台的搭建对理论模型进行验证,证明了结构模型的正确性。
  • 图  1  仿竹节式软体驱动器

    图  2  拉伸实验

    图  3  应力-应变曲线图

    图  4  驱动器的弯曲状态图

    图  5  内芯制备模具装配图

    图  6  软体驱动器实物图

    图  7  实验平台

    图  8  输入气压与软体驱动器弯曲角度关系

    表  1  仿竹节式软体驱动器参数 mm

    参数 数值
    驱动器内芯/L0 115
    空腔半径/r1 4.5
    内芯半径/r2 6.5
    空腔基底厚/B 2
    竹管宽度/D1 3.6
    竹节厚度/D2 8.8
    下载: 导出CSV

    表  2  弯曲角度与输入气压的关系对比

    P/kPa θ/rad θ/rad 相对误差/%
    0 0 0 0
    10 0.323 80 0.352 53 8.872 76
    20 0.661 67 0.701 57 6.030 30
    30 1.016 82 1.095 99 7.785 65
    40 1.390 15 1.469 46 5.705 07
    50 1.783 39 1.902 27 6.665 89
    60 2.198 52 2.443 28 11.132 99
    70 2.637 82 2.984 29 13.132 83
    下载: 导出CSV
  • [1] 曹玉君, 尚建忠, 梁科山, 等.软体机器人研究现状综述[J].机械工程学报, 2012, 48(3):25-33 http://www.cnki.com.cn/Article/CJFDTotal-SBGX201802022.htm

    CAO Y J, SHANG J Z, LIANG K S, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering, 2012, 48(3):25-33 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SBGX201802022.htm
    [2] 张忠强, 邹娇, 丁建宁, 等.软体机器人驱动研究现状[J].机器人, 2018, 40(5):648-659 http://www.cnki.com.cn/Article/CJFDTotal-JQRR20180903001.htm

    ZHANG Z G, ZOU J, DING J N, et al. Research status of the soft robot driving[J]. Robot, 2018, 40(5):648-659 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JQRR20180903001.htm
    [3] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467-475 doi: 10.1038/nature14543
    [4] ILIEVSKI F, MAZZEO A D, Shepherd R F, et al. Soft robotics for chemists[J]. Angewandte Chemie International Edition, 2011, 50(8):1890-1895 doi: 10.1002/anie.201006464
    [5] 胡兵兵, 金国庆.一种仿虎甲幼虫的多驱动器软体机器人的设计与制造[J].机器人, 2018, 40(5):626-633 http://www.cnki.com.cn/Article/CJFDTotal-JQRR201805007.htm

    HU B B, JIN G Q. Design and fabrication of a multi-actuator soft robot inspired by young tiger beetle[J]. Robot, 2018, 40(5):626-633 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JQRR201805007.htm
    [6] DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35(1-3):161-185 doi: 10.1177/0278364915592961
    [7] TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3):213-223 doi: 10.1089/soro.2014.0008
    [8] POLYGERINOS P, LYNE S, WANG Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 1512-1517
    [9] POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73:135-143 doi: 10.1016/j.robot.2014.08.014
    [10] MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Soft robotics: pneumatic networks for soft robotics that actuate rapidly (Adv. Funct. Mater. 15/2014)[J]. Advanced Functional Materials, 2014, 24(15):2109 doi: 10.1002/adfm.201470092
    [11] POLYGERINOS P, GALLOWAY K C, SAVAGE E, et al. Soft robotic glove for hand rehabilitation and task specific training[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015: 2913-2919
    [12] POLYGERINOS P, WANG Z, OVERVELDE J T B, et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transa-ctions on Robotics, 2015, 31(3):778-789 doi: 10.1109/TRO.2015.2428504
    [13] 魏树军, 王天宇, 谷国迎.基于纤维增强型驱动器的气动软体抓手设计[J].机械工程学报, 2017, 53(13):29-38 http://www.cnki.com.cn/Article/CJFDTotal-JXXB201713004.htm

    WEI S J, WANG T Y, GU G Y. Design of a soft pneumatic robotic gripper based on fiber-reinforced actuator[J]. Journal of Mechanical Engineering, 2017, 53(13):29-38 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JXXB201713004.htm
    [14] GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1):23-33 doi: 10.1089/soro.2015.0019
    [15] HAO Y F, GONG Z Y, XIE Z X, et al. Universal soft pneumatic robotic gripper with variable effective length[C]//Proceedings of 2016 35th Chinese Control Conference. Chengdu: IEEE, 2016: 6109-6114
    [16] 王宁扬, 孙昊, 姜皓, 等.一种基于蜂巢气动网络的软体夹持器抓取策略研究[J].机器人, 2016, 38(3):371-377, 384 http://www.cnki.com.cn/Article/CJFDTotal-JQRR201603014.htm

    WANG N Y, SUN H, JIANG H, et al. On grasp strategy of honeycomb PneuNets soft gripper[J]. Robot, 2016, 38(3):371-377, 384 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JQRR201603014.htm
    [17] YAP H K, LIM J H, NASRALLAH F, et al. A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015: 4967-4972
    [18] The New York Times Company. Wriggling its way forward[EB/OL].[2010-02-25]. http:/www.nytimescom/imagepages/2007/03/26/science/2007032_ROBO_GRAPHIC.html
    [19] MARCHESE A D, ONAL C D, RUS D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1):75-87 doi: 10.1089/soro.2013.0009
    [20] CHEN F J, DIRVEN S, XU W L, et al. Soft actuator mimicking human esophageal peristalsis for a swallowing robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4):1300-1308 doi: 10.1109/TMECH.2013.2280119
    [21] 刘伟庭, 方向生, 陈裕泉.仿生"蚯蚓"机器人的SMA执行器实现[J].传感技术学报, 2005, 18(3):623-626 doi: 10.3969/j.issn.1004-1699.2005.03.046

    LIU W T, FANG X S, CHEN Y Q. Realizing of SMA actuators for biomimetic earthworm[J]. Chinese Journal of Sensors and Actuators, 2005, 18(3):623-626 (in Chinese) doi: 10.3969/j.issn.1004-1699.2005.03.046
    [22] ELSAYED Y, VINCENSI A, LEKAKOU C, et al. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications[J]. Soft Robotics, 2014, 1(4):255-262 doi: 10.1089/soro.2014.0016
    [23] 王华, 康荣杰, 王兴坚, 等.软体弯曲驱动器设计与建模[J].北京航空航天大学学报, 2017, 43(5):1053-1060 http://www.cnki.com.cn/Article/CJFDTotal-BJHK201705026.htm

    WANG H, KANG R J, WANG X J, et al. Design and modeling of a soft bending actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5):1053-1060 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-BJHK201705026.htm
    [24] 黄建龙, 解广娟, 刘正伟.基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J].橡胶工业, 2008, 55(8):467-471 doi: 10.3969/j.issn.1000-890X.2008.08.004

    HUANG J L, XIE G J LIU Z W. FEA of hyperelastic rubber material based on Mooney-Rivlin model and Yeoh model[J]. China Rubber Industry, 2008, 55(8):467-471 (in Chinese) doi: 10.3969/j.issn.1000-890X.2008.08.004
    [25] 于浩.侵蚀条件下橡胶材料受力性能试验研究[D].沈阳: 沈阳建筑大学, 2016

    YU H. Erosion under the condition of the rubber material mechanical performance test research[D]. Shenyang: Shenyang Jianzhu University, 2016 (in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  49
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回