留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境下含脱粘损伤蜂窝夹芯材料弯曲性能研究

卢翔 曾琼芝

卢翔, 曾琼芝. 湿热环境下含脱粘损伤蜂窝夹芯材料弯曲性能研究[J]. 机械科学与技术, 2021, 40(1): 146-154. doi: 10.13433/j.cnki.1003-8728.20190343
引用本文: 卢翔, 曾琼芝. 湿热环境下含脱粘损伤蜂窝夹芯材料弯曲性能研究[J]. 机械科学与技术, 2021, 40(1): 146-154. doi: 10.13433/j.cnki.1003-8728.20190343
LU Xiang, ZENG Qiongzhi. Study on Bending Properties of Honeycomb Sandwich Materials with Debonding Damage under Hygrothermal Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 146-154. doi: 10.13433/j.cnki.1003-8728.20190343
Citation: LU Xiang, ZENG Qiongzhi. Study on Bending Properties of Honeycomb Sandwich Materials with Debonding Damage under Hygrothermal Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(1): 146-154. doi: 10.13433/j.cnki.1003-8728.20190343

湿热环境下含脱粘损伤蜂窝夹芯材料弯曲性能研究

doi: 10.13433/j.cnki.1003-8728.20190343
基金项目: 

民机专项项目 MJZ-2018-Y-86

民机专项项目 MJ-2016-Y-73

详细信息
    作者简介:

    卢翔(1969-), 副教授, 博士, 研究方向为民机维修工程分析,1647573570@qq.com

  • 中图分类号: V257

Study on Bending Properties of Honeycomb Sandwich Materials with Debonding Damage under Hygrothermal Environment

  • 摘要: 通过使用三明治夹芯等效理论将蜂窝芯层等效为均匀连续的实体单元,将湿热环境中的湿应力等效为热应力,建立湿热环境下的蜂窝夹芯材料本构方程,以改进Hashin准则与Besant准则作为蜂窝夹芯材料的失效判据,并通过编写VUMAT子程序实现。采用Cohesive单元模拟面板与芯层间的连接方式建立湿热环境下蜂窝夹芯板的有限元模型,研究湿热环境对蜂窝夹芯材料弯曲性能的影响。切除某些Cohesive区域模拟面板与芯层脱粘现象并计算脱粘损伤对材料性能的影响,对比边缘脱粘与内部脱粘研究脱粘位置对蜂窝夹芯材料弯曲性能的影响。结果表明湿热环境降低了材料的极限承载能力,脱粘现象会加速面板与芯层分离,脱粘位置影响材料的损伤扩展性能,降低材料的弯曲强度。
  • 图  1  VUMAT计算逻辑图

    图  2  等效蜂窝夹芯有限元模型与几何模型

    图  3  蜂窝夹芯材料三点弯曲载荷-位移曲线

    图  4  蜂窝夹芯材料三点弯曲Mises应力云图

    图  5  蜂窝面板基体拉伸失效

    图  6  蜂窝面板纤维基体剪切失效

    图  7  蜂窝面板层间拉伸分层失效

    图  8  不含脱粘损伤三点弯曲胶层与面板脱粘Mises应力云图

    图  9  不含脱粘损伤胶层失效扩展

    图  10  含脱粘损伤三点弯曲胶层与面板脱粘Mises应力云图

    图  11  含脱粘损伤胶层失效扩展

    图  12  边缘脱粘与内部脱粘胶层失效扩展

    图  13  蜂窝夹芯材料脱粘Mises应力云图

    表  1  蜂窝面板参数退化

    损伤类型 材料参数退化方式
    基体拉伸损伤 E22=0.2E22, G12=0.2G12, G23=0.2G23
    基体压缩损伤 E22=0.4E22, G12=0.4G12, G23=0.4G23
    纤维拉伸损伤 Eii=0.07Eii, Gij=0.07Gij, υij=0.07υij(i, j=1, 2, 3, ij)
    纤维压缩损伤 Eii=0.14Eii(i=1, 2, 3), Gij=0.14Gij, υij=0.14υij(i, j=1, 2, 3, ij)
    纤维基体剪切损伤 G12=0.1G12, υ12=0.1υ12
    分层损伤 E33=0.1E33, G23=0.1G23, υ23=0.1υ23, υ13=0.1υ13
    下载: 导出CSV

    表  2  蜂窝芯层参数退化

    损伤状态 参数退化
    Fcore2≥1, 材料发生皱曲破坏 E1=0.4E1, E2=0.4E2, E3=0.45E3
    υ12=υ12, υ13=υ13, υ23=υ23
    G12=0.4G12, G13=0.4G13, G23=0.4G23
    下载: 导出CSV
  • [1] ABBADI A, KOUTSAWA Y, CARMASOL A, et al. Experimental and numerical characterization of honeycomb sandwich composite panels[J]. Simulation Modelling Practice and Theory, 2009, 17(10):1533-1547 doi: 10.1016/j.simpat.2009.05.008
    [2] CRUPI V, KARA E, EPASTO G, et al. Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches[J]. International Journal of Impact Engineering, 2015, 77:97-107 doi: 10.1016/j.ijimpeng.2014.11.012
    [3] ROY R, PARK S J, KWEON J H, et al. Characterization of Nomex honeycomb core constituent material mechanical properties[J]. Composite Structures, 2014, 117:255-266 doi: 10.1016/j.compstruct.2014.06.033
    [4] FAN H L, YANG L, SUN F F, et al. Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites[J]. Composites Part A: Applied Science and Manufacturing, 2013, 52:118-125 doi: 10.1016/j.compositesa.2013.04.013
    [5] CHEN Z, YAN N, DENG J, et al. Influence of environmental humidity and temperature on the creep behavior of sandwich panel[J]. International Journal of Mechanical Sciences, 2017, 134:216-223 doi: 10.1016/j.ijmecsci.2017.10.013
    [6] JOSHI N, MULIANA A. Deformation in viscoelastic sandwich composites subject to moisture diffusion[J]. Composite Structures, 2010, 92(2):254-264 doi: 10.1016/j.compstruct.2009.07.021
    [7] HAJMOHAMMAD M H, AZIZKHANI M B, KOLAHCHI R. Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: dynamic buckling analysis[J]. International Journal of Mechanical Sciences, 2018, 137:205-213 doi: 10.1016/j.ijmecsci.2018.01.026
    [8] RIZK G, LEGRAND V, KHALIL K, et al. Durability of sandwich composites under extreme conditions: towards the prediction of fire resistance properties based on thermo-mechanical measurements[J]. Composite Structures, 2018, 186:233-245 doi: 10.1016/j.compstruct.2017.12.009
    [9] ZHONG Y C, JOSHI S C. Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates[J]. Materials & Design, 2015, 65:254-264
    [10] HAN J Y, YU K P, LI X Y, et al. Modal density and mode counts of sandwich panels in thermal environments[J]. Composite Structures, 2016, 153:69-80 doi: 10.1016/j.compstruct.2016.05.109
    [11] 徐胜今, 孔宪仁, 王本利, 等.正交异性蜂窝夹层板动、静力学问题的等效分析方法[J].复合材料学报, 2000, 17(3):92-95 doi: 10.3321/j.issn:1000-3851.2000.03.021

    XU S J, KONG X R, WANG B L, et al. Mehtod of equivalent analysis for statics and dynamics behavior of orthotropic honeycomb sandwich plates[J]. Acta Materiae Compositae Sinica, 2000, 17(3):92-95 (in Chinese) doi: 10.3321/j.issn:1000-3851.2000.03.021
    [12] 富明慧, 徐欧腾, 陈誉.蜂窝芯层等效参数研究综述[J].材料导报, 2015, 29(5):127-134 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201505024.htm

    FU M H, XU O T, CHEN Y. An overview of equivalent parameters of honeycomb cores[J]. Materials Review, 2015, 29(5):127-134 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201505024.htm
    [13] 李跃宇, 邹振民, 樊蔚勋.含脱层的蜂窝夹芯板结构的弯曲试验研究[J].玻璃钢/复合材料, 1998(2):16-17 https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF802.005.htm

    LI Y Y, ZOU Z M, FAN W X. Test investigation on honeycomb sandwich plate delamination under bending loads[J]. Fiber Reinforced Plastics/Composites, 1998(2):16-17 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF802.005.htm
    [14] 华洲.复合材料蜂窝夹芯板结构损伤及其修理后仿真分析[D].哈尔滨: 哈尔滨工业大学, 2017

    HUA Z. Numerical analysis on damage and repair of honeycomb sandwich composite panels[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese)
    [15] 白云鹤, 于开平, 赵锐, 等.高温与脱粘对复合材料蜂窝板模态特性影响的试验[J].复合材料学报, 2018, 35(4):885-895 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201804017.htm

    BAI Y H, YU K P, ZHAO R, et al. Experimental investigation on the effects of the high temperature and debonding on the modal characteristics of the composite honeycomb structure[J]. Acta Materiae Compositae Sinica, 2018, 35(4):885-895 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201804017.htm
    [16] 赵天, 杨智春, 田玮, 等.湿热环境下复合材料层合板振动与声辐射特性分析[J].航空学报, 2017, 38(10):221038 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201710014.htm

    ZHAO T, YANG Z C, TIAN W, et al. Vibration and acoustic radiation characteristics analysis of composite laminated plate in hygrothermal environments[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):221038 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201710014.htm
    [17] BENKHEDDA A, TOUNSI A, ADDA BEDIA E A. Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates[J]. Composite Structures, 2008, 82(4):629-635 doi: 10.1016/j.compstruct.2007.04.013
    [18] TSERPES K I, LABEAS G, PAPANIKOS P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B: Engineering, 2002, 33(7):521-529 doi: 10.1016/S1359-8368(02)00033-1
    [19] BESANT T, DAVIES G A O, HITCHINGS D. Finite element modelling of low velocity impact of composite sandwich panels[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9):1189-1196 doi: 10.1016/S1359-835X(01)00084-7
    [20] 郭轩, 关志东, 邱诚, 等.蜂窝夹芯挖补修理结构弯曲性能研究[J].北京航空航天大学学报, 2018, 44(7):1528-1536 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201807022.htm

    GUO X, GUAN Z D, QIU C, et al. Flexural performance of scarf repaired honeycomb sandwich structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7):1528-1536 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201807022.htm
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  62
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-03
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回