留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻尼复合板声辐射特性的参数化水平集拓扑优化

李壮 黄逸哲 郑伟光 黄其柏

李壮, 黄逸哲, 郑伟光, 黄其柏. 阻尼复合板声辐射特性的参数化水平集拓扑优化[J]. 机械科学与技术, 2020, 39(11): 1641-1646. doi: 10.13433/j.cnki.1003-8728.20190334
引用本文: 李壮, 黄逸哲, 郑伟光, 黄其柏. 阻尼复合板声辐射特性的参数化水平集拓扑优化[J]. 机械科学与技术, 2020, 39(11): 1641-1646. doi: 10.13433/j.cnki.1003-8728.20190334
Li Zhuang, Huang Yizhe, Zheng Weiguang, Huang Qibai. Topology Optimization of Composite Plate Structures for Acoustic Radiation using Parameterized Level Set Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1641-1646. doi: 10.13433/j.cnki.1003-8728.20190334
Citation: Li Zhuang, Huang Yizhe, Zheng Weiguang, Huang Qibai. Topology Optimization of Composite Plate Structures for Acoustic Radiation using Parameterized Level Set Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1641-1646. doi: 10.13433/j.cnki.1003-8728.20190334

阻尼复合板声辐射特性的参数化水平集拓扑优化

doi: 10.13433/j.cnki.1003-8728.20190334
基金项目: 

国家自然科学基金项目 51575201

详细信息
    作者简介:

    李壮(1995-), 博士研究生, 研究方向为振动与噪声控制, 735491275@qq.com

    通讯作者:

    黄其柏, 教授, 博士生导师, qbhuang@hust.edu.cn

  • 中图分类号: TG156

Topology Optimization of Composite Plate Structures for Acoustic Radiation using Parameterized Level Set Method

  • 摘要: 围绕自由阻尼复合板的阻尼层分布形式对结构声辐射特性的影响,采用基于全局支撑径向基函数(GSRBF)插值的参数化水平集方法,提出了一种以复合板表面法向复振速幅值之和作为简化目标的声辐射特性优化方法。在阻尼层材料体积分数约束下,求解目标函数的变分并构建水平集函数速度场,以数值算例验证了该简化模型在避免复杂计算的同时能有效降低结构声辐射功率,说明参数化水平集方法用于基于声辐射特性的复合板结构拓扑优化是行之有效的。
  • 图  1  自由阻尼复合板结构

    图  2  板的声辐射功率计算方法

    图  3  水平集函数描述材料界面

    图  4  优化过程中阻尼层分布变化

    图  5  收敛条件变化

    图  6  优化前后声辐射功率

    图  7  不同目标优化结果

    图  8  不同目标下的声功率对比

    表  1  材料参数

    材料特性 基板 粘弹性层
    长×宽×厚/m 0.4×0.3×0.001 0.4×0.3×0.002
    密度/(kg·m-3) 7 900 1 400
    杨氏模量/GPa 210 0.5
    泊松比 0.3 0.49
    材料损耗因子 - 0.5
    下载: 导出CSV

    表  2  不同优化目标下的总声功率

    优化目标 对照组 第1个峰值 第2个峰值 第3个峰值
    总声功率/dB 112.13 105.70 105.34 105.40
    下载: 导出CSV
  • [1] Lall A K, Nakra B C, Asnani N T. Optimum design of viscoelastically damped sandwich panels[J]. Engineering Optimization, 1983, 6(4):197-205 doi: 10.1080/03052158308902470
    [2] Alvelid M, Enelund M. Modelling of constrained thin rubber layer with emphasis on damping[J]. Journal of Sound and Vibration, 2007, 300(3-5):662-675 doi: 10.1016/j.jsv.2006.08.031
    [3] 徐伟, 张志飞, 庾鲁思, 等.附加自由阻尼板阻尼材料降噪拓扑优化[J].振动与冲击, 2017, 36(11):192-198, 223 http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201711031.htm

    Xu W, Zhang Z F, Yu L S, et al. Topology optimization for noise reduction of structures with free damping[J]. Journal of Vibration and Shock, 2017, 36(11):192-198, 223(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201711031.htm
    [4] 刘海, 高行山, 常俊玲.加筋板自由阻尼铺层的拓扑优化研究[J].强度与环境, 2014, 41(2):27-33 http://www.cqvip.com/QK/90906X/201402/49617165.html

    Liu H, Gao H S, Chang J L. Damping material optimal distribution of stiffened plate with free damping treatment using topology optimization[J]. Structure & Environment Engineering, 2014, 41(2):27-33(in Chinese) http://www.cqvip.com/QK/90906X/201402/49617165.html
    [5] 王睿, 张晓鹏, 吴良武, 等.考虑瞬态响应的薄板结构阻尼材料层拓扑优化[J].工程力学, 2015, 32(6):1-7, 14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201506001

    Wang R, Zhang X P, Wu L W, et al. Topology optimization of damping layer in thin-plate structures considering transient response[J]. Engineering Mechanics, 2015, 32(6):1-7, 14(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201506001
    [6] Sigmund O. Materials with prescribed constitutive parameters:an inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17):2313-2329 doi: 10.1016/0020-7683(94)90154-6
    [7] Mlejnek H P, Schirrmacher R. An engineer's approach to optimal material distribution and shape finding[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 106(1-2):1-26 doi: 10.1016/0045-7825(93)90182-W
    [8] Querin O M, Young V, Steven G P, et al. Computational efficiency and validation of bi-directional evolutionary structural optimisation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(2):559-573 doi: 10.1016/S0045-7825(99)00309-6
    [9] Wang W W, Ye H L, Sui Y K. Lightweight topology optimization with buckling and frequency constraints using the independent continuous mapping method[J]. Acta Mechanica Solida Sinica, 2019, 32(3):310-325 doi: 10.1007/s10338-019-00088-5
    [10] Guirguis D, Hamza K, Aly M, et al. Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach[J]. Structural and Multidisciplinary Optimization, 2015, 51(3):733-748 doi: 10.1007%2fs00158-014-1154-3
    [11] Liu T, Wang S T, Li B, et al. A level-set-based topology and shape optimization method for continuum structure under geometric constraints[J]. Structural and Multidisciplinary Optimization, 2014, 50(2):253-273 http://dl.acm.org/citation.cfm?id=2659948
    [12] Okamoto Y, Masuda H, Kanda Y, et al. Improvement of topology optimization method based on level set function in magnetic field problem[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2018, 37(2):630-644 doi: 10.1108/COMPEL-12-2016-0528
    [13] Wei P, Li Z Y, Li X P, et al. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(2):831-849 http://smartsearch.nstl.gov.cn/paper_detail.html?id=315d8e7a2146d411221f5ce9b0953497
    [14] Chandra N, Raja S, Nagendra Gopal K V. Vibro-acoustic response and sound transmission loss analysis of functionally graded plates[J]. Journal of Sound and Vibration, 2014, 333(22):5786-5802 doi: 10.1016/j.jsv.2014.06.031
    [15] Li H, Gao L, Li P G. Topology optimization of structures under multiple loading cases with a new compliance-volume product[J]. Engineering Optimization, 2014, 46(6):725-744 doi: 10.1080/0305215X.2013.800054
    [16] Ansari M, Khajepour A, Esmailzadeh E. Application of level set method to optimal vibration control of plate structures[J]. Journal of Sound and Vibration, 2013, 332(4):687-700 doi: 10.1016/j.jsv.2012.09.006
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  51
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回