留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应噪声极值加权模态分解及其在低速滚动轴承故障诊断中的应用

苏缪涎 郑近德 潘海洋 童靳于 刘庆运 潘紫微

苏缪涎, 郑近德, 潘海洋, 童靳于, 刘庆运, 潘紫微. 自适应噪声极值加权模态分解及其在低速滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2020, 39(11): 1662-1670. doi: 10.13433/j.cnki.1003-8728.20190329
引用本文: 苏缪涎, 郑近德, 潘海洋, 童靳于, 刘庆运, 潘紫微. 自适应噪声极值加权模态分解及其在低速滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2020, 39(11): 1662-1670. doi: 10.13433/j.cnki.1003-8728.20190329
Su Miaoxian, Zheng Jinde, Pan Haiyang, Tong Jinyu, Liu Qingyun, Pan Ziwei. Complete Ensemble Extreme-point Weighted Mode Decomposition with Adaptive Noise and its Application to Fault Diagnosis of Low Speed Rolling Bearings[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1662-1670. doi: 10.13433/j.cnki.1003-8728.20190329
Citation: Su Miaoxian, Zheng Jinde, Pan Haiyang, Tong Jinyu, Liu Qingyun, Pan Ziwei. Complete Ensemble Extreme-point Weighted Mode Decomposition with Adaptive Noise and its Application to Fault Diagnosis of Low Speed Rolling Bearings[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1662-1670. doi: 10.13433/j.cnki.1003-8728.20190329

自适应噪声极值加权模态分解及其在低速滚动轴承故障诊断中的应用

doi: 10.13433/j.cnki.1003-8728.20190329
基金项目: 

国家重点研发计划项目 2017YFC0805100

国家自然科学基金项目 51975004

国家自然科学基金项目 51505002

安徽省高校自然科学研究重点项目 KJ2019A053

安徽省高校自然科学研究重点项目 KJ2019A092

详细信息
    作者简介:

    苏缪涎(1994-), 硕士研究生, 研究方向为机械故障诊断, mxsu1994@126.com

    通讯作者:

    郑近德, 副教授, 硕士生导师, 博士, lqdlzheng@126.com

  • 中图分类号: TH17

Complete Ensemble Extreme-point Weighted Mode Decomposition with Adaptive Noise and its Application to Fault Diagnosis of Low Speed Rolling Bearings

  • 摘要: 极值加权模态分解(Extreme-point weighted mode decomposition,EWMD)是在经验模态分解(Empirical mode decomposition,EMD)的基础上提出的一种自适应信号分解方法,能够改善EMD的分解能力。针对于EWMD的模态混叠问题,借鉴噪声辅助分解思想,提出了自适应噪声极值加权模态分解(Complete ensemble extreme-point weighted mode decomposition with adaptive noise,CEEWMDAN)。CEEWMDAN通过向原始信号中添加辅助噪声,用改进的均值曲线构造方式提取内禀模态函数,有效地抑制模态混叠,且分解结果对集成次数的依赖性小,在保证分解精度的前提下减少了计算量。通过仿真实验数据分析验证了CEEWMDAN在提高分解性能和抑制模态混叠方面的有效性。提出了一种基于CEEWMDAN和快速谱峭度的低速滚动轴承故障诊断方法,并应用于实测数据分析。结果表明所提出的方法能够有效地识别低速滚动轴承故障。
  • 图  1  不同α分解结果的正交性指标和能量比

    图  2  不同集成次数的分解结果的正交性指标和能量比

    图  3  仿真信号的时域图以及EWMD、CEEMDAN和CEEWMDAN方法的分解结果

    图  4  ID-25/30型轴承全寿命试验台的结构示意图

    图  5  内圈故障轴承

    图  6  轴承内圈故障信号时域图

    图  7  CEEWMDAN的分解结果和包络功率谱

    图  8  EWMD的分解结果和包络功率谱

    图  9  CEEMDAN的分解结果和包络功率谱

    表  1  IMF的能量比ER和正交性指标IO

    指标 CEEMDAN CEEWMDAN EWMD
    ER1 0.449 5 0.386 8 10.098 4
    ER2 0.549 2 0.031 3 1.185 1
    ER3 0.023 2 0.032 1 0.561 5
    IO 0.144 9 0.094 2 44.759 5
    下载: 导出CSV
  • [1] 程军圣, 王健, 桂林.改进的EEMD方法及其在滚动轴承故障诊断中的应用[J].振动与冲击, 2018, 37(16):51-56 http://www.cqvip.com/main/zcps.aspx?c=1&id=7000791540

    Cheng J S, Wang J, Gui L. An improved EEMD method and its application in rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(16):51-56(in Chinese) http://www.cqvip.com/main/zcps.aspx?c=1&id=7000791540
    [2] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995 doi: 10.1098/rspa.1998.0193
    [3] Peng Z K, Tse P W, Chu F L. An improved Hilbert- Huang transform and its application in vibration signal analysis[J]. Journal of Sound and Vibration, 2005, 286(1-2):187-205 doi: 10.1016/j.jsv.2004.10.005
    [4] Yu D J, Cheng J S, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005, 19(2):259-270 doi: 10.1016/S0888-3270(03)00099-2
    [5] Yang Y, Yu D J, Cheng J S. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1-2):269-277 doi: 10.1016/j.jsv.2005.11.002
    [6] Liu T C, Wu T Y. Application of empirical mode decomposition and envelop analysis to fault diagnosis in roller bearing with single/double defect[J]. Smart Science, 2017, 5(3):150-159 doi: 10.1080/23080477.2017.1346497
    [7] Li Y B, Xu M Q, Huang W H, et al. An improved EMD method for fault diagnosis of rolling bearing[C]//2016 Prognostics and System Health Management Conference. Chengdu: IEEE, 2017
    [8] Fosso O B, Molinas M. Method for mode mixing separation in empirical mode decomposition[J]. arXiv: 1709.05547, 2017: 1-7
    [9] Zheng J D, Pan H Y, Liu T, et al. Extreme-point weighted mode decomposition[J]. Signal Processing, 2018, 142:366-374 doi: 10.1016/j.sigpro.2017.08.002
    [10] 胡爱军, 孙敬敬, 向玲.经验模态分解中的模态混叠问题[J].振动、测试与诊断, 2011, 31(4):429-434 http://www.cnki.com.cn/Article/CJFDTotal-ZDCS201104006.htm

    Hu A J, Sun J J, Xiang L. Mode mixing in empirical mode decomposition[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(4):429-434(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZDCS201104006.htm
    [11] Zhai X M, Zhao L N, Zhang P. Two solutions of EMD mode mixing[J]. Advanced Materials Research, 2012, 433-440:5364-5367 doi: 10.4028/www.scientific.net/AMR.433-440.5364
    [12] Tang B P, Dong S J, Song T. Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation[J]. Signal Processing, 2012, 92(1):248-258 doi: 10.1016/j.sigpro.2011.07.013
    [13] 肖瑛, 殷福亮.解相关EMD:消除模态混叠的新方法[J].振动与冲击, 2015, 34(4):25-29 http://d.wanfangdata.com.cn/Periodical/zdycj201504006

    Xiao Y, Yin F L. Decorrelation EMD:a new method of eliminating mode mixing[J]. Journal of Vibration and Shock, 2015, 34(4):25-29(in Chinese) http://d.wanfangdata.com.cn/Periodical/zdycj201504006
    [14] Wu Z H, Huang N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41 http://www.bioone.org/servlet/linkout?suffix=i1551-5036-29-1-43-wu1&dbid=16&doi=10.2112%2fjcoastres-d-12-00048.1&key=10.1142%2fs1793536909000047
    [15] 郑近德, 程军圣, 杨宇.改进的EEMD算法及其应用研究[J].振动与冲击, 2013, 32(21):21-26, 46 http://www.cqvip.com/QK/95775X/201321/49428243.html

    Zheng J D, Cheng J S, Yang Y. Modified EEMD algorithm and its applications[J]. Journal of Vibration and Shock, 2013, 32(21):21-26, 46(in Chinese) http://www.cqvip.com/QK/95775X/201321/49428243.html
    [16] Xue X M, Zhou J Z, Xu Y H, et al. An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 62-63:444-459 doi: 10.1016/j.ymssp.2015.03.002
    [17] Zhang X Y, Liang Y T, Zhou J Z, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J]. Measurement, 2015, 69:164-179 doi: 10.1016/j.measurement.2015.03.017
    [18] Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition:a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2):135-156
    [19] Torres M' E, Colominas M A, Schlotthauer G' et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic: IEEE, 2011
    [20] Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD:A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14:19-29 doi: 10.1016/j.bspc.2014.06.009
    [21] Wang L, Liu Z W, Miao Q, et al. Complete ensemble local mean decomposition with adaptive noise and its application to fault diagnosis for rolling bearings[J]. Mechanical Systems and Signal Processing, 2018, 106:24-39 doi: 10.1016/j.ymssp.2017.12.031
    [22] Wang J, Luo Y Y, Tang L Y, et al. A new weighted CEEMDAN-based prediction model:An experimental investigation of decomposition and non-decomposition approaches[J]. Knowledge-Based Systems, 2018, 160:188-199 doi: 10.1016/j.knosys.2018.06.033
    [23] Hassan A R, Bhuiyan M I H. Computer-aided sleep staging using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and bootstrap aggregating[J]. Biomedical Signal Processing and Control, 2016, 24:1-10 doi: 10.1016/j.bspc.2015.09.002
    [24] 郑近德, 程军圣, 杨宇.基于改进的ITD和模糊熵的滚动轴承故障诊断方法[J].中国机械工程, 2012, 23(19):2372-2377 http://d.wanfangdata.com.cn/Periodical/zgjxgc201219021

    Zheng J D, Cheng J S, Yang Y. A rolling bearing fault diagnosis method based on improved ITD and fuzzy entropy[J]. China Mechanical Engineering, 2012, 23(19):2372-2377(in Chinese) http://d.wanfangdata.com.cn/Periodical/zgjxgc201219021
    [25] 程秀芳, 陶文.基于小波理论的低速重载轴承的故障诊断研究[J].组合机床与自动化加工技术, 2009, (12):48-50 http://www.cqvip.com/QK/71135X/201107/32446652.html

    Cheng X F, Tao W. Research on failure diagnosis of low-speed over-loading bearing using wavelet theory[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2009, (12):48-50(in Chinese) http://www.cqvip.com/QK/71135X/201107/32446652.html
    [26] 段佳雷, 王茹月, 叱干博文.基于自相关EMD和快速谱峭度消噪的轴承故障诊断方法研究[J].自动化与仪器仪表, 2017, (5):101-103 http://www.cqvip.com/QK/92335X/20175/672185687.html

    Duan J L, Wang R Y, Chigan B W. Bearing fault diagnosis method based on EMD and fast spectral kurtosis[J]. Automation & Instrumentation, 2017, (5):101-103(in Chinese) http://www.cqvip.com/QK/92335X/20175/672185687.html
    [27] 彭畅, 柏林, 谢小亮.基于EEMD、度量因子和快速峭度图的滚动轴承故障诊断方法[J].振动与冲击, 2012, 31(20):143-146 http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201220029.htm

    Peng C, Bo L, Xie X L. Fault diagnosis method of rolling element bearings based on EEMD, measure-factor and fast kurtogram[J]. Journal of Vibration and Shock, 2012, 31(20):143-146(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201220029.htm
    [28] 任学平, 李攀, 王朝阁.基于VMD和快速谱峭度的滚动轴承早期故障诊断[J].轴承, 2017, (12):39-43 http://www.cqvip.com/QK/93607C/201709/673282923.html

    Reng X P, Li P, Wang C G. Rolling bearing early fault diagnosis based on VMD and FSK[J]. Bearing, 2017, (12):39-43(in Chinese) http://www.cqvip.com/QK/93607C/201709/673282923.html
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  51
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-24
  • 刊出日期:  2020-11-01

目录

    /

    返回文章
    返回