留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压离心泵进口压力与轴向力特性的关联性

梁武科 何庆南 董玮 魏清希 吴子娟 江伟

梁武科,何庆南,董玮, 等. 高压离心泵进口压力与轴向力特性的关联性[J]. 机械科学与技术,2020,39(10):1497-1504 doi: 10.13433/j.cnki.1003-8728.20190313
引用本文: 梁武科,何庆南,董玮, 等. 高压离心泵进口压力与轴向力特性的关联性[J]. 机械科学与技术,2020,39(10):1497-1504 doi: 10.13433/j.cnki.1003-8728.20190313
Liang Wuke, He Qingnan, Dong Wei, Wei Qingxi, Wu Zijuan, Jiang Wei. Association between Inlet Pressure and Axial Force of a High Pressure Centrifugal Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1497-1504. doi: 10.13433/j.cnki.1003-8728.20190313
Citation: Liang Wuke, He Qingnan, Dong Wei, Wei Qingxi, Wu Zijuan, Jiang Wei. Association between Inlet Pressure and Axial Force of a High Pressure Centrifugal Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1497-1504. doi: 10.13433/j.cnki.1003-8728.20190313

高压离心泵进口压力与轴向力特性的关联性

doi: 10.13433/j.cnki.1003-8728.20190313
基金项目: 中央高校基本科研业务费专项项目(Z1090219041)、陕西省自然科学基础研究计划项目(2019JLM-58)及陕西省水利科技计划项目(2019slkj-15,2019slkj-10)资助
详细信息
    作者简介:

    梁武科(1965−),教授,博士,研究方向为流体机械设计、运行、改造及故障诊断, liangwuke@vip.163.com

    通讯作者:

    董玮,讲师,博士,dongw@nwafu.edu.cn

  • 中图分类号: TH311

Association between Inlet Pressure and Axial Force of a High Pressure Centrifugal Pump

  • 摘要: 高压离心泵进口压力是影响其轴向力大小的因素之一。选取某高压半开式叶轮离心泵在0.8 ~1.2 Qd的工作区域,在对外特性计算结果进行试验验证的基础上,详细分析进口压力为7.8 ~ 8.2 MPa的5种条件下,叶轮盖板外侧轴向力F1、叶轮盖板内侧轴向力F2、叶片轴向力F3、轴端轴向力F4的分布规律,并绘制各轴向分力增加率与流量变化曲线。揭示设计流量1.0 Qd时,叶轮盖板内、外侧壁面及叶片工作面、背面压力分布特征,得出叶轮盖板外侧壁面轴向力近似计算方法。研究表明:同一流量工况时,进口压力越大,叶轮盖板外侧轴向力F1、叶轮盖板内侧轴向力F2、叶片轴向力F3、轴端轴向力F4均越大,离心泵总轴向力F越小。同一进口压力时,轴端轴向力F4不受流量变化影响,但流量越大,离心泵总轴向力F越小。因此,本研究对减小高压离心泵轴向力,提高其运行稳定性具有重要的指导意义。
  • 图  1  离心泵三维造型

    图  2  离心泵计算域网格

    图  3  离心泵性能曲线图

    图  4  半开式叶轮

    图  5  轴向分力变化曲线图

    图  6  轴向分力增加率曲线图

    图  7  压力分布云图

    图  8  叶轮盖板外侧壁面压力分布曲线

    图  9  总轴向力变化曲线图

    表  1  离心泵设计参数

    流量Q/(m3·h−1)扬程H/m转速n/(r·min−1)效率η/%轴功率P/kW进口压力p/MPa
    380752 95082.893.88
    下载: 导出CSV

    表  2  离心泵叶轮几何参数

    参数名称数值
    叶轮直径D2/mm 259
    叶轮轮毂直径Dm/mm 75
    叶轮进口直径D/mm 200
    叶片数Z 6
    下载: 导出CSV

    表  3  网格无关性验证

    网格数N/106扬程H/m效率η/%
    1.1274.3482.88
    1.5074.6382.97
    1.8774.7583.11
    2.2774.7783.12
    2.6574.7783.12
    3.0474.7783.12
    下载: 导出CSV

    表  4  网格划分

    计算域名称网格类型数目
    进口段结构网格3.51×105
    叶轮结构网格6.92×105
    蜗壳结构网格5.86×105
    出口段结构网格3.38×105
    泵腔结构网格3.03×105
    下载: 导出CSV

    表  5  扬程数值计算结果

    进口压力p/MPa扬程H/m
    0.8Qd0.9Qd1.0Qd1.1Qd1.2Qd
    7.8 76.37 75.67 74.77 72.86 70.60
    7.9 76.26 75.57 74.77 72.86 70.60
    8.0 76.24 75.67 74.77 72.86 70.60
    8.1 76.24 75.67 74.77 72.86 70.62
    8.2 76.25 75.67 74.77 72.86 70.60
    下载: 导出CSV

    表  6  总效率数值计算结果

    进口压力p/MPa效率η/%
    0.8Qd0.9Qd1.0Qd1.1Qd1.2Qd
    7.8 77.16 81.92 83.11 83.95 84.04
    7.9 77.23 81.08 83.12 83.95 84.05
    8.0 77.21 81.08 83.12 83.96 84.05
    8.1 77.23 81.09 83.13 83.96 84.08
    8.2 77.23 81.09 83.13 83.96 84.05
    下载: 导出CSV

    表  7  轴功率数值计算结果

    进口压力p/MPa轴功率P/kW
    0.8Qd0.9Qd1.0Qd1.1Qd1.2Qd
    7.8 81.91 86.00 93.06 98.75 104.28
    7.9 81.71 86.88 93.06 98.75 104.28
    8.0 81.71 86.89 93.05 98.74 104.28
    8.1 81.69 86.88 93.05 98.74 104.25
    8.2 81.70 86.87 93.05 98.74 104.27
    下载: 导出CSV

    表  8  F4计算结果对比

    p/MPa理论计算F4/kN数值计算F4/kN
    7.8−33.99−33.81
    7.9−34.44−34.25
    8.0−34.88−34.68
    8.1−35.32−35.23
    8.2−35.76−35.56
    下载: 导出CSV

    表  9  轴向分力增加率均值变化表

    pa−1${\bar F_1}$/%${\bar F_2}$/%${\bar F_3}$/%${\bar F_4}$/%
    p2−11.171.191.681.30
    p3−21.221.261.661.28
    p4−31.181.181.651.58
    p5−41.161.211.490.94
    下载: 导出CSV

    表  10  轴向力计算结果对比

    p/MPaF1/kNFa/kNFb/kN
    7.8400.05399.60399.36
    7.9404.63404.42404.18
    8.0409.70409.24409.01
    8.1414.63414.05413.82
    8.2419.34418.87418.64
    下载: 导出CSV
  • [1] Guo M, Liu S H, Tang X L, et al. Evaluation of shaft forces in a vertical canned motor through local hydraulic loss analysis[J]. Advances in Mechanical Engineering, 2018, 10(3): 168781401876559 doi: 10.1177/1687814018765599
    [2] Nishida M, Negishi T, Sakota D, et al. Properties of a monopivot centrifugal blood pump manufactured by 3D printing[J]. Journal of Artificial Organs, 2016, 19(4): 322-329 doi: 10.1007/s10047-016-0914-9
    [3] Xia B, Kong F Y, Zhang H, et al. Investigation of axial thrust deviation between the theory and experiment for high-speed mine submersible pump[J]. Advances in Mechanical Engineering, 2018, 10(8): 168781401878925 doi: 10.1177/1687814018789256
    [4] Takamine T, Furukawa D, Watanabe S, et al. Experimental analysis of diffuser rotating stall in a three-stage centrifugal pump[J]. International Journal of Fluid Machinery and Systems, 2018, 11(1): 77-84 doi: 10.5293/IJFMS.2018.11.1.077
    [5] 蒋小平, 吴家辉, 冯琦, 等. 基于CFD的悬臂式多级离心泵径向力与轴向力研究[J]. 水电能源科学, 2017, 35(11): 178-182, 189

    Jiang X P, Wu J H, Feng Q, et al. Study on radial and axial force of cantilever multistage centrifugal pump based on CFD[J]. Water Resources and Power, 2017, 35(11): 178-182, 189 (in Chinese
    [6] 刘瑞祥, 曹蕾, 张弋扬, 等. 考虑轴向间隙影响的挖泥泵轴向力数值分析[J]. 农业工程学报, 2014, 30(18): 101-108 doi: 10.3969/j.issn.1002-6819.2014.18.013

    Liu R X, Cao L, Zhang Y Y, et al. Numerical analysis of axial force on dredging pump considering influence of axial clearance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 101-108 (in Chinese doi: 10.3969/j.issn.1002-6819.2014.18.013
    [7] 何相慧, 刘厚林, 谈明高, 等. 叶轮背叶片形状对熔盐泵性能的影响[J]. 排灌机械工程学报, 2017, 35(4): 289-295 doi: 10.3969/j.issn.1674-8530.15.0288

    He X H, Liu H L, Tan M G, et al. Influence of impeller back-blade type on molten-salt pump performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(4): 289-295 (in Chinese doi: 10.3969/j.issn.1674-8530.15.0288
    [8] Mortazavi F, Riasi A, Nourbakhsh A. Numerical investigation of back vane design and its impact on pump performance[J]. Journal of Fluids Engineering, 2017, 139(12): 121104 doi: 10.1115/1.4037281
    [9] 刘在伦, 陈小昌, 王东伟, 等. 离心泵平衡孔液体泄漏量试验与分析[J]. 农业工程学报, 2017, 33(7): 67-74 doi: 10.11975/j.issn.1002-6819.2017.07.009

    Liu Z L, Chen X C, Wang D W, et al. Experiment and analysis of balance hole liquid leakage in centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 67-74 (in Chinese doi: 10.11975/j.issn.1002-6819.2017.07.009
    [10] 赵伟国, 芦维强, 刘在伦. 平衡孔直径对离心泵小流量工况空化特性影响[J]. 实验流体力学, 2017, 31(5): 60-66

    Zhao W G, Lu W Q, Liu Z L. Effects of balance holes diameter on cavitation characteristics of centrifugal pump under low flow rates[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 60-66 (in Chinese
    [11] 付燕霞, 袁寿其, 袁建平, 等. 叶片数对离心泵小流量工况空化特性的影响[J]. 农业机械学报, 2015, 46(4): 21-27 doi: 10.6041/j.issn.1000-1298.2015.04.004

    Fu Y X, Yuan S Q, Yuan J P, et al. Effect of blade numbers on cavitating flow of centrifugal pump under low flow rates[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 21-27 (in Chinese doi: 10.6041/j.issn.1000-1298.2015.04.004
    [12] 司乔瑞, 袁寿其, 李晓俊, 等. 空化条件下离心泵泵腔内不稳定流动数值分析[J]. 农业机械学报, 2014, 45(5): 84-90 doi: 10.6041/j.issn.1000-1298.2014.05.013

    Si Q R, Yuan S Q, LI X J, et al. Numerical simulation of unsteady cavitation flow in the casing of a centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 84-90 (in Chinese doi: 10.6041/j.issn.1000-1298.2014.05.013
    [13] 李嘉, 李华聪, 王淑红, 等. 诱导轮与叶轮组合式航空燃油离心泵轴向力间隙补偿[J]. 航空动力学报, 2016, 31(11): 2765-2772

    Li J, Li H C, Wang S H, et al. Outlet clearance optimization on axial-force of inducer and impeller combination aero fuel centrifugal pump[J]. Journal of Aerospace Power, 2016, 31(11): 2765-2772 (in Chinese
    [14] 谭磊, 曹树良, 王玉明, 等. 离心泵叶轮内部流场的数值计算[J]. 农业工程学报, 2012, 28(14): 47-51 doi: 10.3969/j.issn.1002-6819.2012.14.008

    Tan L, Cao S L, Wang Y M, et al. Numerical calculations for internal flow field in centrifugal pump impeller[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(14): 47-51 (in Chinese doi: 10.3969/j.issn.1002-6819.2012.14.008
    [15] 李伟, 施卫东, 蒋小平, 等. 多级离心泵轴向力的数值计算与试验研究[J]. 农业工程学报, 2012, 28(23): 52-59

    Li W, Shi W D, Jiang X P, et al. Numerical calculation and experimental study of axial force on multistage centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23): 52-59 (in Chinese
    [16] 周岭, 施卫东, 陆伟刚, 等. 深井离心泵轴向力数值预测与试验[J]. 农业机械学报, 2012, 43(7): 100-103, 140 doi: 10.6041/j.issn.1000-1298.2012.07.018

    Zhou L, Shi W D, Lu W G, et al. Numerical prediction and experiment of axial force on deep-well centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(7): 100-103, 140 (in Chinese doi: 10.6041/j.issn.1000-1298.2012.07.018
    [17] Nishida M, Nakayama K, Sakota D, et al. Effect of impeller geometry on lift-off characteristics and rotational attitude in a monopivot centrifugal blood pump[J]. Artificial Organs, 2016, 40(6): E89-E101 doi: 10.1111/aor.12697
    [18] Dong W, Chu W L. Numerical investigation of the fluid flow characteristics in the hub plate crown of a centrifugal pump[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 64 doi: 10.1186/s10033-018-0264-z
    [19] Bruurs K A J, Van Esch B P M, Van Der Schoot M S. Exit loss model for plain axial seals in multi-stage centrifugal pumps[C]//Proceedings of ASME 2017 Fluids Engineering Division Summer Meeting. Waikoloa, Hawaii, USA: ASME, 2017
    [20] Zhou L, Shi W D, Li W, et al. Numerical and experimental study of axial force and hydraulic performance in a deep-well centrifugal pump with different impeller rear shroud radius[J]. Journal of Fluids Engineering, 2013, 135(10): 104501 doi: 10.1115/1.4024894
  • 加载中
图(9) / 表(10)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  53
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回