留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机激励下减速带振动能量捕获器的发电性能研究

吴子英 位强

吴子英,位强. 随机激励下减速带振动能量捕获器的发电性能研究[J]. 机械科学与技术,2020,39(10):1511-1519 doi: 10.13433/j.cnki.1003-8728.20190309
引用本文: 吴子英,位强. 随机激励下减速带振动能量捕获器的发电性能研究[J]. 机械科学与技术,2020,39(10):1511-1519 doi: 10.13433/j.cnki.1003-8728.20190309
Wu Ziying, Wei Qiang. Research on Power Generation Performance of Speed Bump Vibration Energy Harvester under Random Excitation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1511-1519. doi: 10.13433/j.cnki.1003-8728.20190309
Citation: Wu Ziying, Wei Qiang. Research on Power Generation Performance of Speed Bump Vibration Energy Harvester under Random Excitation[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1511-1519. doi: 10.13433/j.cnki.1003-8728.20190309

随机激励下减速带振动能量捕获器的发电性能研究

doi: 10.13433/j.cnki.1003-8728.20190309
基金项目: 国家自然科学基金项目(11572243)资助
详细信息
    作者简介:

    吴子英(1975−),副教授,硕士生导师,研究方向为机电系统动力学理论及控制,ziyingwu@163.com

  • 中图分类号: O322

Research on Power Generation Performance of Speed Bump Vibration Energy Harvester under Random Excitation

  • 摘要: 本文将双稳态振动能量发电装置引入到减速带结构中,提出了一种双稳态减速带振动能量捕获装置,建立了其力学模型和控制方程。假定车重和车速符合正态分布,利用数值仿真方法,分别针对车重和车速其中一个参数随机变化及车重和车速两个参数同时随机变化这两种情况,研究并分析了车重和车速均值和方差对减速带发电功率的影响规律,研究结果表明,减速带发电系统输出功率随着车重均值和方差的增加而增大。不同车重均值的车辆通过减速带时,减速带发电功率最大值所对应的车速均值不同,最佳车速均值约在20 ~ 25 km/h之间,减速带发电功率随着速度方差的增大而逐渐减小,在较大发电功率下,双稳态发电振子在两个平衡点间产生大幅混沌运动,处于有利于发电的状态.
  • 图  1  减速带发电装置结构简图

    图  2  车辆−减速带系统力学模型

    图  3  双稳态振动能量发电装置力学模型及外部电路

    图  4  圆弧形减速带形状示意图

    图  5  4种车型下${\mu _{v}}$对发电量的影响

    图  6  不同${\mu _v}$时系统的相图

    图  7  不同车型下$\sigma _{v}^2$对输出功率的影响

    图  8  不同$\sigma _{v}^2$时系统的相图

    图  9  4种车速下${\mu _{m}}$对均方根功率的影响

    图  10  4种车速下减速带下压速度

    图  11  ${\mu _m} = 5\;400{\kern 1pt} {\kern 1pt} {\rm{kg}}$时,4种车速下发电振子振动响应图

    图  12  不同车速下$\sigma _m^{\rm{2}}$对功率的影响

    图  13  不同$\sigma _{m}^2$时系统的相图

    图  14  发电功率与${\mu _{m}}$${\mu _v}$的三维关系曲面

    图  15  4种车重均值下发电功率与速度均值关系曲线

    图  16  不同${\mu _v}$时系统的相图

    图  17  发电功率与$\sigma _m^2$$\sigma _v^2$的三维关系曲面

    图  18  5种车重均值下发电功率与速度方差关系曲线

    表  1  4种车型参数

    参数ABCD
    m/kg 50 70 110 130
    ms/kg 950 1350 2000 3670
    ku/(N·m−1) 180000 250000 400000 562667
    ks/(N·m−1) 35000 45000 60000 182000
    cu/(N·s·m−1) 3000 3500 5800 10933
    cs/(N·s·m−1) 1500 1800 3000 6400
    下载: 导出CSV
  • [1] 孔凡国, 吴冠霖. 电磁式公路减速带发电装置理论研究[J]. 机械设计与制造, 2014,(4): 76-78 doi: 10.3969/j.issn.1001-3997.2014.04.024

    Kong F G, Wu G L. Theoretical research of speed controlling and electricity generating humps by electromagnetic[J]. Machinery Design & Manufacture, 2014,(4): 76-78 (in Chinese doi: 10.3969/j.issn.1001-3997.2014.04.024
    [2] Andriopoulou S. A review on energy harvesting from roads[D]. Stockholm: KTH Royal Institute of Technology, 2012: 50-89.
    [3] Aqeel H, Abdulsada S A. Electric power generation device through bumps industrial[J]. Academic Research International, 2013, 4(4): 48-50
    [4] Vázquez-Rodríguez M, Jiménez F J, De Frutos J. Energy harvesting input stage model for piezoelectric materials involved in road traffic applications[C]//Proceedings of 2012 IEEE International Conference on Industrial Technology. Athens, Greece: IEEE, 2012: 7-12.
    [5] Chen N, Jung H J, Jabbar H, et al. A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit[J]. Sensors and Actuators A: Physical, 2017, 254: 134-144 doi: 10.1016/j.sna.2016.12.006
    [6] 王福杰. 利用行驶车辆动能的发电系统: 中国, CN103075311A[P]. 2013-05-01.

    Wang F J. System for generating power by using kinetic energy of running vehicle: CN, CN103075311A[P]. 2013-05-01 (in Chinese).
    [7] Wang L R, Todaria P, Pandey A, et al. An electromagnetic speed bump energy harvester and its interactions with vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 1985-1994.
    [8] 刘丽兰, 张小静. 白噪声激励下势阱深度对双稳态系统发电性能的影响研究[J]. 机械科学与技术, 2018, 37(9): 1336-1343

    Liu L L, Zhang X J. Influence of potential well depth on power generation performance of bistable system excited by white noise[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(9): 1336-1343 (in Chinese
    [9] Nguyen D S, Halvorsen E, Jensen G U, et al. Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs[J]. Journal of Micromechanics and Microengineering, 2010, 20(12): 125009 doi: 10.1088/0960-1317/20/12/125009
    [10] Burrow S G, Clare L R, Carrella A, et al. Vibration energy harvesters with non-linear compliance[C]//Proceedings of SPIE 6928, Active and Passive Smart Structures and Integrated Systems. San Diego, California, United States: SPIE, 2008.
    [11] Manevitch L I, Sigalov G, Romeo F, et al. Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study[J]. Journal of Applied Mechanics, 2014, 81(4): 041011 doi: 10.1115/1.4025150
    [12] Firoozy P, Khadem S E, Pourkiaee S M. Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam[J]. International Journal of Engineering Science, 2017, 111: 113-133 doi: 10.1016/j.ijengsci.2016.11.006
    [13] Wang H Y, Tang L H. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling[J]. Mechanical Systems and Signal Processing, 2017, 86: 29-39 doi: 10.1016/j.ymssp.2016.10.001
    [14] Tang L H, Yang Y W, Soh C K. Improving functionality of vibration energy harvesters using magnets[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1433-1449 doi: 10.1177/1045389X12443016
    [15] Lin J T, Lee B, Alphenaar B. The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency[J]. Smart Materials and Structures, 2010, 19(4): 045012 doi: 10.1088/0964-1726/19/4/045012
    [16] 郑剑. 减速带激励下非线性汽车悬架系统动力学特性研究[D]. 重庆: 重庆大学, 2010.

    Zheng J. Study on dynamics character of nonlinear vehicle suspension system due to speed control bumps impact[D]. Chongqing: Chongqing University, 2010 (in Chinese).
    [17] Neelakantan P C, Babu A V. Computation of minimum transmit power for network connectivity in vehicular ad hoc networks formed by vehicles with random communication range[J]. International Journal of Communication Systems, 2014, 27(6): 931-955 doi: 10.1002/dac.2390
    [18] 朱子豪. 基于车辆运行的减速带振动能量回收方法研究[D]. 上海: 上海工程技术大学, 2015.

    Zhu Z H. Study on the recovery theory of speed bump vibration energy based on the running of vehicle[D]. Shanghai: Shanghai University of Engineering Science, 2015 (in Chinese).
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  52
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回