留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火箭发动机精清洗容器的结构设计及内流场特性模拟研究

李中 刘玉涛

李中,刘玉涛. 火箭发动机精清洗容器的结构设计及内流场特性模拟研究[J]. 机械科学与技术,2020,39(10):1575-1579 doi: 10.13433/j.cnki.1003-8728.20190300
引用本文: 李中,刘玉涛. 火箭发动机精清洗容器的结构设计及内流场特性模拟研究[J]. 机械科学与技术,2020,39(10):1575-1579 doi: 10.13433/j.cnki.1003-8728.20190300
Li Zhong, Liu Yutao. Structural Design and Simulation of Internal Flow Field Characteristic of Precision Cleaning Vessel for Rocket Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1575-1579. doi: 10.13433/j.cnki.1003-8728.20190300
Citation: Li Zhong, Liu Yutao. Structural Design and Simulation of Internal Flow Field Characteristic of Precision Cleaning Vessel for Rocket Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1575-1579. doi: 10.13433/j.cnki.1003-8728.20190300

火箭发动机精清洗容器的结构设计及内流场特性模拟研究

doi: 10.13433/j.cnki.1003-8728.20190300
详细信息
    作者简介:

    李中(1994−),硕士研究生,研究方向为机械设计及流场分析,644456303@qq.com

    通讯作者:

    刘玉涛,研究员,硕士生导师,2298591613@qq.com

  • 中图分类号: TK221

Structural Design and Simulation of Internal Flow Field Characteristic of Precision Cleaning Vessel for Rocket Engine

  • 摘要: 针对目前火箭发动机精清洗的常用方法,提出了一种60 L清洗容器的设计方法,通过容积计算、外形尺寸计算、强度计算、开孔补强计算、支腿校核计算等,完成图纸的绘制。基于Fluent数值模拟方法,对该清洗容器内流场特性进行仿真,得到全过程可视化压力场云图和速度场云图气液相图。同时,使用多项流模型中的VOF模型,捕捉整个容器内气-液相界面。模拟结果表明,数值模拟的预测与设计要求的预期结果比较一致,说明该设计可行性较高。
  • 图  1  60 L清洗容器设计图

    图  2  清洗容器计算网格

    图  3  清洗容器剖面压力云图

    图  4  清洗容器剖面速度云图

    图  5  清洗容器剖面气液相图

    表  1  网格质量分布

    参数值质量分布扭曲度
    0.4 ~ 0.512%0
    0.5 ~ 0.636%24.0%
    0.6 ~ 1.052%76.0%
    下载: 导出CSV
  • [1] 刘昌国, 黄永民, 林庆国. 液体火箭发动机用N2O4、甲基肼的清洗剂的研制[J]. 化学推进剂与高分子材料, 2018, 16(2): 53-58

    Liu C G, Huang Y M, Liu Q G. Development of N2O4 and methyl hydrazine cleaning agents for liquid rocket engine[J]. Chemical Propellants & Polymeric Materials, 2018, 16(2): 53-58 (in Chinese)
    [2] Dapelo D, Alberini F, Bridgeman J. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion[J]. Water Research, 2015, 85: 497-511 doi: 10.1016/j.watres.2015.08.042
    [3] 侯祯, 蔡创雄, 张亚朋, 等. 硝酸盐自然循环回路熔盐空气热交换器风冷通道内流场特性分析[J]. 核技术, 2018, 41(10): 72-78

    Hou Z, Cai C X, Zhang Y P, et al. Analysis of natural circulation flow field inside the air-cooled channel of molten salt-air heat exchanger in the nitrate natural circulation loop[J]. Nuclear Techniques, 2018, 41(10): 72-78 (in Chinese
    [4] 张文武, 余志毅, 李泳江, 等. 叶片式气液混输泵全流道内流场特性分析[J]. 机械工程学报, 2019, 55(10): 168-174 doi: 10.3901/JME.2019.10.168

    Zhang W W, Yu Z Y, Li Y J, et al. Flow characteristics analysis for the whole flow passage of a multiphase rotodynamic pump[J]. Journal of Mechanical Engineering, 2019, 55(10): 168-174 (in Chinese doi: 10.3901/JME.2019.10.168
    [5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB 150.1~150.4-2011 《压力容器》标准释义[S]. 北京: 中国标准出版社, 2012

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China .GB 150.1~150.4-2011 Pressure vessel[S]. Beijing: Standards Press of China, 2012 (in Chinese)
    [6] 中华人民共和国国家发展和改革委员会.JB/T 4712.2-2007 容器支座 第2部分 腿式支座[S]. 北京: 机械工业出版社, 2008

    National Development and Reform Commission. JB/T 4712.2-2007 Vessel supports-part 2: leg support[S]. Beijing: China Machine Press, 2018 (in Chinese)
    [7] 蔡玉强, 李亚丛. 液体蒸发的数值模拟[J]. 华北理工大学学报, 2017, 39(3): 99-104

    Cai Y Q, Li Y C. Numerical simulation of liquid evaporation[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2017, 39(3): 99-104 (in Chinese
    [8] 范华, 杨刚, 李冰. 压力旋流喷嘴内流场特性模拟研究[J]. 机电工程, 2018, 35(8): 838-842 doi: 10.3969/j.issn.1001-4551.2018.08.011

    Fan H, Yang G, Li B. Numerical investigation on inner flow field of pressure swirl nozzle[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(8): 838-842 (in Chinese doi: 10.3969/j.issn.1001-4551.2018.08.011
    [9] 黄晓庆, 张旭, 张东亮. 撞击型喷嘴雾化特性的试验研究[J]. 流体机械, 2016, 44(4): 1-3, 16 doi: 10.3969/j.issn.1005-0329.2016.04.001

    Huang X Q, Zhang X, Zhang D L. Experimental study on the atomization characteristic of impingement-type nozzle[J]. Fluid Machinery, 2016, 44(4): 1-3, 16 (in Chinese doi: 10.3969/j.issn.1005-0329.2016.04.001
    [10] 龚杰, 郭春雨, 赵大刚, 等. 导管桨内流场及涡特性DES模拟[J]. 哈尔滨工程大学学报, 2019, 40(8): 1381-1386

    Gong J, Guo C Y, Zhao D G, et al. Detached eddy simulations of internal flow fields and vortex characteristics of ducted propellers[J]. Journal of Harbin Engineering University, 2019, 40(8): 1381-1386 (in Chinese
    [11] Bhattacharyya A, Krasilnikov V, Steen S. A CFD-based scaling approach for ducted propellers[J]. Ocean Engineering, 2016, 123: 116-130 doi: 10.1016/j.oceaneng.2016.06.011
    [12] Gaggero S, Tani G, Viviani M, et al. A study on the numerical prediction of propellers cavitating tip vortex[J]. Ocean Engineering, 2014, 92: 137-161 doi: 10.1016/j.oceaneng.2014.09.042
    [13] 胡健, 王楠, 胡洋. 加速导管和减速导管的性能比较[J]. 北京航空航天大学学报, 2017, 43(2): 240-252

    Hu J, Wang N, Hu Y. Performance comparison of accelerating duct and decelerating duct[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 240-252 (in Chinese
    [14] 杨兆铭, 陈建磊, 韩云蕊, 等. 二级旋流气液分离装置设计与流场特性模拟[J]. 过程工程学报, 2018, 18(6): 1198-1209 doi: 10.12034/j.issn.1009-606X.218124

    Yang Z M, Chen J L, Han Y R, et al. Design of two-stage swirling gas-liquid separator and simulation of flow field characteristics[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1198-1209 (in Chinese doi: 10.12034/j.issn.1009-606X.218124
    [15] Wang A M, Marashdeh Q, Fan L S. ECVT imaging and model analysis of the liquid distribution inside a horizontally installed passive cyclonic gas–liquid separator[J]. Chemical Engineering Science, 2016, 141: 231-239 doi: 10.1016/j.ces.2015.11.004
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  40
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-30
  • 网络出版日期:  2020-10-12
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回