留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光立体成形TC4热-变形行为数值分析

鹿旭飞 马良 林鑫 郑宇翔

鹿旭飞, 马良, 林鑫, 郑宇翔. 激光立体成形TC4热-变形行为数值分析[J]. 机械科学与技术, 2020, 39(9): 1450-1456. doi: 10.13433/j.cnki.1003-8728.20190291
引用本文: 鹿旭飞, 马良, 林鑫, 郑宇翔. 激光立体成形TC4热-变形行为数值分析[J]. 机械科学与技术, 2020, 39(9): 1450-1456. doi: 10.13433/j.cnki.1003-8728.20190291
Lu Xufei, Ma Liang, Lin Xin, Zheng Yuxiang. Numerical Analysis of Thermal Distortion Behavior for Laser Solid Formed TC4 Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1450-1456. doi: 10.13433/j.cnki.1003-8728.20190291
Citation: Lu Xufei, Ma Liang, Lin Xin, Zheng Yuxiang. Numerical Analysis of Thermal Distortion Behavior for Laser Solid Formed TC4 Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1450-1456. doi: 10.13433/j.cnki.1003-8728.20190291

激光立体成形TC4热-变形行为数值分析

doi: 10.13433/j.cnki.1003-8728.20190291
基金项目: 

国家重点研发计划项目 2016YFB1100602

国家重点研发计划项目 2016YFB1100104

详细信息
    作者简介:

    鹿旭飞(1994-), 博士研究生, 研究方向为增材制造热应力仿真, luxufei@mail.nwpu.edu.cn

    通讯作者:

    马良, 高级工程师, 博士, maliang@nwpu.edu.cn

  • 中图分类号: TG146

Numerical Analysis of Thermal Distortion Behavior for Laser Solid Formed TC4 Alloy

  • 摘要: 本文针对激光立体成形过程中的热应力变形问题,首先利用原位测量平台监测了一次沉积和二次沉积单壁墙过程中的温度场和基板变形历史,然后基于测量结果校验了有限元热力耦合模型,最后分析了激光立体成形过程中热-变形的演化规律。结果表明,模拟结果与实验结果相符。随着沉积层数增加高温区面积不断增加,且熔池前沿温度梯度明显大于熔池尾部。相比一次沉积过程,二次沉积过程中熔池温度明显较高,且升温速率更快。另外,初始沉积阶段的高温度梯度和冷却阶段的高冷速是诱导热应力和变形的主要因素。
  • 图  1  LSF原位测量实验

    图  2  热电偶和位移传感器监测位置及试样尺寸

    图  3  单壁墙有限元模型

    图  4  一次沉积过程中的温度场分布

    图  5  一次沉积过程中基板温度计算结果与实验对比

    图  6  一次沉积过程计算的熔池温度与实验对比

    图  7  一次沉积基板变形计算结果与实验对比

    图  8  二次沉积过程中温度场演化

    图  9  二次沉积过程中基板D、E两点温度模拟曲线

    图  10  熔池温度演化

    图  11  二次沉积过程中基板DS点的翘曲变形历史

    表  1  LSF工艺参数

    试样 光斑直
    径/mm
    激光功
    率/W
    扫描速
    度/(mm·s-1)
    抬升
    量/mm
    1 3 1 500 10 0.15
    2 3 2 000 8 0.15
    下载: 导出CSV
  • [1] Frazier W E. Metal additive manufacturing:a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928 doi: 10.1007/s11665-014-0958-z
    [2] Lu X F, Lin X, Chiumenti M, et al. Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V[J]. Additive Manufacturing, 2018, 21:30-40 doi: 10.1016/j.addma.2018.02.003
    [3] Huang W D, Lin X. Research progress in laser solid forming of high-performance metallic components at the state key laboratory of solidification processing of china[J]. 3D Printing and Additive Manufacturing, 2014, 1(3):156-165 doi: 10.1089/3dp.2014.0016
    [4] Lu X F, Lin X, Chiumenti M, et al. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by Directed Energy Deposition:modelling and experimental calibration[J]. Additive Manufacturing, 2019, 26:166-179 doi: 10.1016/j.addma.2019.02.001
    [5] Zheng B, Zhou Y, Smugeresky J E, et al. Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping:Part I. Numerical calculations[J]. Metallurgical and Materials Transactions A, 2008, 39(9):2228-2236 doi: 10.1007/s11661-008-9557-7
    [6] Ji Z, Wu S C. FEM simulation of the temperature field during the laser forming of sheet metal[J]. Journal of Materials Processing Technology, 1998, 74(1-3):89-95 doi: 10.1016/S0924-0136(97)00254-9
    [7] Alimardani M, Toyserkani E, Huissoon J P. A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process[J]. Optics and Lasers in Engineering, 2007, 45(12):1115-1130 doi: 10.1016/j.optlaseng.2007.06.010
    [8] Farshidianfar M H, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(5-8):1173-1186 doi: 10.1007/s00170-015-7423-5
    [9] Farshidianfar M H, Khajepour A, Gerlich A P. Effect of real-time cooling rate on microstructure in laser additive manufacturing[J]. Journal of Materials Processing Technology, 2016, 231:468-478 doi: 10.1016/j.jmatprotec.2016.01.017
    [10] Lu X F, Lin X, Chiumenti M, et al. In situ measurements and thermo-mechanical simulation of Ti-6Al-4V laser solid forming processes[J]. International Journal of Mechanical Sciences, 2019, 153-154:119-130 doi: 10.1016/j.ijmecsci.2019.01.043
    [11] Yang D Q, Wang G, Zhang G J. Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography[J]. Journal of Materials Processing Technology, 2017, 244:215-224 doi: 10.1016/j.jmatprotec.2017.01.024
    [12] Price S, Cheng B, Lydon J, et al. On process temperature in powder-bed electron beam additive manufacturing:process parameter effects[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6):061019 doi: 10.1115/1.4028485
    [13] Denlinger E R, Michaleris P. Effect of stress relaxation on distortion in additive manufacturing process modeling[J]. Additive Manufacturing, 2016, 12:51-59 doi: 10.1016/j.addma.2016.06.011
    [14] Denlinger E R, Jagdale V, Srinivasan G V, et al. Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements[J]. Additive Manufacturing, 2016, 11:7-15 doi: 10.1016/j.addma.2016.03.003
    [15] Heigel J C, Michaleris P, Palmer T A. In situ monitoring and characterization of distortion during laser cladding of Inconel® 625[J]. Journal of Materials Processing Technology, 2015, 220:135-145 doi: 10.1016/j.jmatprotec.2014.12.029
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  30
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回