留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双型线矩形超音速喷嘴的设计及仿真研究

张影 宋华 杨健 高明昕 汪洋 李文斌

张影, 宋华, 杨健, 高明昕, 汪洋, 李文斌. 双型线矩形超音速喷嘴的设计及仿真研究[J]. 机械科学与技术, 2020, 39(9): 1432-1438. doi: 10.13433/j.cnki.1003-8728.20190277
引用本文: 张影, 宋华, 杨健, 高明昕, 汪洋, 李文斌. 双型线矩形超音速喷嘴的设计及仿真研究[J]. 机械科学与技术, 2020, 39(9): 1432-1438. doi: 10.13433/j.cnki.1003-8728.20190277
Zhang Ying, Song Hua, Yang Jian, Gao Mingxin, Wang Yang, Li Wenbin. Designing and Simulating a Double-line Rectangular Supersonic Nozzle[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1432-1438. doi: 10.13433/j.cnki.1003-8728.20190277
Citation: Zhang Ying, Song Hua, Yang Jian, Gao Mingxin, Wang Yang, Li Wenbin. Designing and Simulating a Double-line Rectangular Supersonic Nozzle[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(9): 1432-1438. doi: 10.13433/j.cnki.1003-8728.20190277

双型线矩形超音速喷嘴的设计及仿真研究

doi: 10.13433/j.cnki.1003-8728.20190277
基金项目: 

辽宁省自然科学基金项目 20180550572

详细信息
    作者简介:

    张影(1994-), 硕士研究生, 研究方向为超音速流场、结构设计, 18841207927@163.com

    通讯作者:

    宋华, 教授, 博士生导师, songhua88@126.com

  • 中图分类号: TB552;TH122

Designing and Simulating a Double-line Rectangular Supersonic Nozzle

  • 摘要: 为提高超音速设备对工件处理的均匀性,提出了一种双型线矩形超音速喷嘴。同时基于超音速喷管设计理论,分别对该矩形超音速喷嘴的两条型线进行设计,以获得相应的型线方程。建立了双型线矩形超音速喷嘴的流热耦合有限体积模型,进而对双型线矩形超音速喷嘴的入口压力和出口马赫数对喷嘴流场的影响展开分析。结果表明:双型线矩形超音速喷嘴的速度流场既能够达到设计的马赫数又满足均匀性要求,且能够使喷嘴出口得到横截面形状为矩形的流场,并分别总结了入口压力和出口马赫数对喷嘴流场的影响规律。
  • 图  1  Crown解析设计法原理图

    图  2  双型线矩形超音速喷嘴型腔模型

    图  3  矩形超音速喷嘴1/4模型网格划分

    图  4  喷嘴内部流场速度云图

    图  5  入口压力对喷嘴内流场的影响

    图  6  Ma分别为2、3、4的超音速喷嘴速度云图

    图  7  喷嘴自由射流速度云图

    表  1  不同马赫数下的喷嘴边界层厚度

    马赫数Ma 宽边边界层厚度/mm 窄边边界层厚度/mm
    2 0.962 0.967
    3 1.543 1.792
    4 1.798 3.115
    下载: 导出CSV
  • [1] 王保国, 刘淑艳, 黄伟光.气体动力学[M].北京:北京理工大学出版社, 2005:76-112

    Wang B G, Liu S Y, Huang W G. Gas dynamics[M]. Beijing:Beijing Institute of Technology Press, 2005:76-112(in Chinese)
    [2] 汤红军.基于FLUENT的超音速冷喷涂喷嘴结构设计及数值模拟[D].武汉: 武汉科技大学, 2015

    Tang H J. Structural design and numerical simulation of supersonic cold spraying nozzle based on FLUENT[D]. Wuhan: Wuhan University of Science and Technology, 2015(in Chinese)
    [3] Chang I S. Three-dimensional, two-phase supersonic nozzle flows[J]. AIAA Journal, 1983, 21(5):671-678 doi: 10.2514/3.8132
    [4] Verma S, Chidambaranathan M, Hadjadj A. Analysis of shock unsteadiness in a supersonic over-expanded planar nozzle[J]. European Journal of Mechanics-B/Fluids, 2018, 68:55-65 doi: 10.1016/j.euromechflu.2017.11.005
    [5] Al Qurooni F, Vakil A, Elsaadawy E, et al. Numerical simulation of an over-expanded supersonic and subsonic industrial nozzle flow relevant to flaring system[J]. Transactions of the Canadian Society for Mechanical Engineering, 2019, 43(4):471-480 doi: 10.1139/tcsme-2018-0230
    [6] 王平, 李昌平, 陈柏松.基于CFD数值模拟的拉瓦尔喷管流场分析[J].航空计算技术, 2012, 42(4):60-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkjsjs201204015

    Wang P, Li C P, Chen B S. Laval nozzle flow analysis based on CFD computation[J]. Aeronautical Computing Technique, 2012, 42(4):60-62(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkjsjs201204015
    [7] Zhou L, Liu J, Ma Q, et al. Numerical study of the effect of nozzle configuration on supersonic condensation jet[J]. Journal of Engineering Thermophysics, 2018, 39(1):2017-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201801034
    [8] Gong Z X, Lu C J, Li J, et al. The gas jet behavior in submerged Laval nozzle flow[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(6):1035-1043 doi: 10.1016/S1001-6058(16)60817-X
    [9] Pereira O, Rodríguez A, Barreiro J, et al. Nozzle design for combined use of MQL and cryogenic gas in machining[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(1):87-95 doi: 10.1007/s40684-017-0012-3
    [10] Nie Y Y, Wang C P. Continuous subsonic-sonic flows in a convergent nozzle[J]. Acta Mathematica Sinica, English Series, 2018, 34(4):749-772 doi: 10.1007/s10114-017-7341-6
    [11] 何成军.射流参数对矩形超声速喷管流动特性和推进特性影响研究[D].四川绵阳: 中国空气动力研究与发展中心, 2016

    He C J. Influence of injection parameters on performance of rectangular supersonic nozzle[D]. Sichuan Mianyang: China Aerodynamics Research and Development Center, 2016(in Chinese)
    [12] 谭智海.矩形拉法尔喷管超音速流动的数值模拟[D].重庆: 重庆大学, 2014

    Tan Z H. Numerical simulation of supersonic fluid flow for De-Laval nozzle with rectangular cross section[D]. Chongqing: Chongqing University, 2014(in Chinese)
    [13] 李经警, 张勃, 张纳如, 等.基于大涡模拟的圆转矩喷管尾喷流强化掺混机理研究[J].航空发动机, 2018, 44(2):27-34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201802005

    Li J J, Zhang B, Zhang N R, et al. Investigation on mixing enhancement mechanism of tail jet flow of circle-rectangular transition nozzle based on large eddy simulation[J]. Aeroengine, 2018, 44(2):27-34(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201802005
    [14] 黄芳珍, 曾良, 张科杰.喷嘴结构对等离子喷涂制备Mo涂层组织性能的影响[J].硬质合金, 2018, 35(3):186-191 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yzhj201803006

    Huang F Z, Zeng L, Zhang K J. Influence of nozzel structure on microstructure and performance of plasma sprayed Mo coatings[J]. Cemented Carbide, 2018, 35(3):186-191(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yzhj201803006
    [15] 康皓.U75V重轨在线热处理工艺关键技术的实验研究[D].沈阳: 东北大学, 2012

    Kang H. Experimental research on key technology of on-line heat treatment processes of U75V heavy[D]. Shenyang: Northeastern University, 2012(in Chinese)
    [16] 易仕和, 赵玉新, 何霖, 等.超声速与高超声速喷管设计[M].北京:国防工业出版社, 2013:25-44

    Yi S H, Zhao Y X, He L, et al. Supersonic and hypersonic nozzle design[M]. Beijing:National Defense Industry Press, 2013:25-44(in Chinese)
    [17] 张师帅.计算流体动力学及其应用[M].武汉:华中科技大学出版社, 2011:10

    Zhang S S. Computational fluid dynamics and its applications[M]. Wuhan:Huazhong University of Science and Technology Press, 2011:10(in Chinese)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  62
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 刊出日期:  2020-09-01

目录

    /

    返回文章
    返回