留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米粉体连续高压分散装置的特性研究

袁方洋 崔政伟

袁方洋,崔政伟. 纳米粉体连续高压分散装置的特性研究[J]. 机械科学与技术,2020,39(8):1288-1294 doi: 10.13433/j.cnki.1003-8728.20190270
引用本文: 袁方洋,崔政伟. 纳米粉体连续高压分散装置的特性研究[J]. 机械科学与技术,2020,39(8):1288-1294 doi: 10.13433/j.cnki.1003-8728.20190270
Yuan Fangyang, Cui Zhengwei. Study on Characteristrics of Nanopowder Continuous High Pressure Dispersing System[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20190270
Citation: Yuan Fangyang, Cui Zhengwei. Study on Characteristrics of Nanopowder Continuous High Pressure Dispersing System[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20190270

纳米粉体连续高压分散装置的特性研究

doi: 10.13433/j.cnki.1003-8728.20190270
基金项目: 国家自然科学基金项目(11802105)与江苏省绿色过程装备重点实验室开放课题项目(GPE201705)资助
详细信息
    作者简介:

    袁方洋(1990−),讲师,博士,研究方向为流体机械与两相流体动力学,fyyuan@jiangnan.edu.cn

  • 中图分类号: TB303

Study on Characteristrics of Nanopowder Continuous High Pressure Dispersing System

  • 摘要: 搭建了一种超微颗粒连续分散装置,实验发现纳米颗粒经连续喷射分散可被分散至初级粒径范围。为探讨该装置的机理及高压分散特性,数值模拟了纳米粉体的二级喷射分散过程。结果表明,数值与实验结果的压力动态曲线相符,颗粒数密度沿流动方向降低,实验数据较模拟结果更低。颗粒高压分散的喷嘴不宜过长,以避免颗粒在喷嘴内流动过程中再次团聚,喷嘴长径比在2.5左右可在射流出口产生最大的剪切率,获得最佳的颗粒分散效果。
  • 图  1  纳米粉体连续喷射分散系统

    图  2  两级分散分别获得的颗粒粒径分布

    图  3  高压释放二级分散过程计算模型

    图  4  压力动态曲线

    图  5  同一时刻喷嘴附近各阶矩量的分布图

    图  6  二级分散数值结果与实验结果的比较

    图  7  颗粒中值粒径随喷嘴口径的变化

    表  1  二级分散前各计算域的无量纲初始矩值

    初始矩值高压腔体喷嘴收集气袋
    $m_{00}^*$11.0×10−61.0×10−6
    $m_{10}^*$11.0×10−61.0×10−6
    $m_{20}^*$22.10722.107×10−622.107×10−6
    下载: 导出CSV
  • [1] Cao G Z, Wang Y. Nanostructures and nanomaterials: synthesis, properties and applications[M]. London: World Scientific, 2011
    [2] Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis[J]. Angewandte Chemie International Edition, 2005, 44(48): 7852-7872 doi: 10.1002/anie.200500766
    [3] van Ommen J R, Valverde J M, Pfeffer R. Fluidization of nanopowders: a review[J]. Journal of Nanoparticle Research, 2012, 14(3): 737 doi: 10.1007/s11051-012-0737-4
    [4] Masuda H. Dry dispersion of fine particles in gaseous phase[J]. Advanced Powder Technology, 2009, 20(2): 113-122 doi: 10.1016/j.apt.2009.02.001
    [5] 张丽. 分散、解聚纳米碳酸钙粉体的高效节能粉磨技术[J]. 中国粉体技术, 2014, 20(2): 35-38

    Zhang L. Energy-efficient grinding technology for dispersion and de-aggregation of calcium carbonate nano-particles[J]. China Powder Science and Technology, 2014, 20(2): 35-38 (in Chinese)
    [6] Sullivan R C, Moore M J K, Petters M D, et al. Impact of particle generation method on the apparent hygroscopicity of insoluble mineral particles[J]. Aerosol Science and Technology, 2010, 44(10): 830-846 doi: 10.1080/02786826.2010.497514
    [7] Calvert G, Ghadiri M, Tweedie R. Aerodynamic dispersion of cohesive powders: a review of understanding and technology[J]. Advanced Powder Technology, 2009, 20(1): 4-16 doi: 10.1016/j.apt.2008.09.001
    [8] Tang P, Fletcher D F, Chan H K, et al. Simple and cost-effective powder disperser for aerosol particle size measurement[J]. Powder Technology, 2008, 187(1): 27-36 doi: 10.1016/j.powtec.2008.01.003
    [9] Tiwari A J, Fields C G, Marr L C. A cost-effective method of aerosolizing dry powdered nanoparticles[J]. Aerosol Science and Technology, 2013, 47(11): 1267-1275 doi: 10.1080/02786826.2013.834292
    [10] Tu C X, Lin J Z, Yin Z Q, et al. Powder disperser for the continuous aerosolizing of dry powdered nanoparticles[J]. Advanced Powder Technology, 2017, 28(11): 2848-2858 doi: 10.1016/j.apt.2017.08.011
    [11] 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223

    Qin C P, Yang N. Population balance modeling of breakage and coalescence of dispersed bubbles or droplets in multiphase systems[J]. Progress in Chemistry, 2016, 28(8): 1207-1223 (in Chinese)
    [12] Weiler C, Wolkenhauer M, Trunk M, et al. New model describing the total dispersion of dry powder agglomerates[J]. Powder Technology, 2010, 203(2): 248-253 doi: 10.1016/j.powtec.2010.05.015
    [13] Rumpf H. The strength of granules and agglomerates[M]//Knepper W A. Agglomeration. New York: Interscience, 1962: 414
    [14] De Bona J, Lanotte A S, Vanni M. Internal stresses and breakup of rigid isostatic aggregates in homogeneous and isotropic turbulence[J]. Journal of Fluid Mechanics, 2014, 755: 365-396 doi: 10.1017/jfm.2014.421
    [15] Deng X L, Davé R N. Breakage of fractal agglomerates[J]. Chemical Engineering Science, 2017, 161: 117-126 doi: 10.1016/j.ces.2016.12.018
    [16] 凃程旭. 剪切流中纳米颗粒的凝并和弥散机理及相关的实验技术研究[D]. 杭州: 浙江大学, 2015

    Tu C X. Research on the nanoparticles cogulation and dispersion in shear layers and the related experimental methods[M]. Hangzhou: Zhejiang University, 2015 (in Chinese)
    [17] He M L, Dhaniyala S. A multiple charging correction algorithm for scanning electrical mobility spectrometer data[J]. Journal of Aerosol Science, 2013, 61: 13-26 doi: 10.1016/j.jaerosci.2013.03.007
    [18] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
    [19] Arffman A, Marjamäki M, Keskinen J. Simulation of low pressure impactor collection efficiency curves[J]. Journal of Aerosol Science, 2011, 42(5): 329-340 doi: 10.1016/j.jaerosci.2011.02.006
    [20] Zhang N, Zheng Z C, Glasgow L, et al. Simulation of particle deposition at the bottom surface in a room-scale chamber with particle injection[J]. Advanced Powder Technology, 2010, 21(3): 256-267 doi: 10.1016/j.apt.2009.12.002
    [21] Friedlander S K. Smoke, Dust, and haze: fundamentals of aerosol dynamics[M]. 2nd ed. New York: Oxford University Press, 2000
    [22] Yu M Z, Lin J Z, Chen L H, et al. Large eddy simulation of a planar jet flow with nanoparticle coagulation[J]. Acta Mechanica Sinica, 2006, 22(4): 293-300 doi: 10.1007/s10409-006-0011-z
    [23] Marchisio D L, Soos M, Sefcik J, et al. Role of turbulent shear rate distribution in aggregation and breakage processes[J]. AIChE Journal, 2006, 52(1): 158-173 doi: 10.1002/aic.10614
    [24] Park K S, Heister S D. Modeling particle collision processes in high Reynolds number flow[J]. Journal of Aerosol Science, 2013, 66: 123-138 doi: 10.1016/j.jaerosci.2013.08.010
    [25] Barthelmes G, Pratsinis S E, Buggisch H. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation[J]. Chemical Engineering Science, 2003, 58(13): 2893-2902 doi: 10.1016/S0009-2509(03)00133-7
    [26] Yu M Z, Lin J Z, Chan T. A new moment method for solving the coagulation equation for particles in Brownian motion[J]. Aerosol Science and Technology, 2008, 42(9): 705-713 doi: 10.1080/02786820802232972
    [27] Wang L, Marchisio D L, Vigil R D, et al. CFD simulation of aggregation and breakage processes in laminar Taylor–Couette flow[J]. Journal of Colloid and Interface Science, 2005, 282(2): 380-396 doi: 10.1016/j.jcis.2004.08.127
    [28] Wu Y Y, Tu C X, Zhang Z G, et al. Effect of divergence angle of ejector nozzle on aerosolisation of powdered nanoparticles[J]. Molecular Simulation, 2019, 45(7): 556-563 doi: 10.1080/08927022.2018.1564076
    [29] Mi J X, Xu M Y, Zhou T M. Reynolds number influence on statistical behaviors of turbulence in a circular free jet[J]. Physics of Fluids, 2013, 25(7): 075101 doi: 10.1063/1.4811403
    [30] Mi J, Nathan G J. Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles[J]. Flow, Turbulence and Combustion, 2010, 84(4): 583-606 doi: 10.1007/s10494-009-9240-0
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4791
  • HTML全文浏览量:  164
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-30
  • 网络出版日期:  2020-12-29

目录

    /

    返回文章
    返回