留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿人机器人上下肢摆动规律研究

杜美林 郭祖华 孟偲

杜美林,郭祖华,孟偲. 仿人机器人上下肢摆动规律研究[J]. 机械科学与技术,2020,39(8):1156-1162 doi: 10.13433/j.cnki.1003-8728.20190264
引用本文: 杜美林,郭祖华,孟偲. 仿人机器人上下肢摆动规律研究[J]. 机械科学与技术,2020,39(8):1156-1162 doi: 10.13433/j.cnki.1003-8728.20190264
Du Meilin, Guo Zuhua, Meng Cai. Exploring Swing Mechanism of Upper and Lower Limbs of Humanoid Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1156-1162. doi: 10.13433/j.cnki.1003-8728.20190264
Citation: Du Meilin, Guo Zuhua, Meng Cai. Exploring Swing Mechanism of Upper and Lower Limbs of Humanoid Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1156-1162. doi: 10.13433/j.cnki.1003-8728.20190264

仿人机器人上下肢摆动规律研究

doi: 10.13433/j.cnki.1003-8728.20190264
基金项目: 国家自然科学基金重大研究计划重点项目(91748201)资助
详细信息
    作者简介:

    杜美林(1996−),硕士研究生,研究方向为仿人机器人平衡控制及仿真,dumeilin@buaa.edu.cn

    通讯作者:

    郭祖华,副教授,guozuhua@buaa.edu.cn

  • 中图分类号: TP242

Exploring Swing Mechanism of Upper and Lower Limbs of Humanoid Robot

  • 摘要: 研究了仿人机器人上下肢摆动参数对步行能耗的影响,进而提出了实现仿人机器人低能耗行走的肢体摆动策略。通过将四肢抽象成单摆,建立了机器人的简化模型,据此求解机器人行走时所受的转身力矩;用非小角度假设情况下单摆摆角的近似解来描述四肢摆动角的变化规律,并分析了步行运动时的能耗机理,给出了简化模型下计算功耗的方法。以某仿人机器人模型为算例,研究了肢体摆动频率对机器人行走功耗的影响;提出了在给定行走速度时,保证机器人转身力矩在一定范围内变化的前提下,省能量的上下肢摆动幅度/频率的规划策略。仿真计算表明,采用文中提出的肢体摆动规律有利于降低仿人机器人的行走功耗。
  • 图  1  机器人模型示意及部分坐标系定义

    图  2  单摆受力分析图

    图  3  四肢摆动功率消耗随ω${A_a}$的变化

    图  4  根据扭转稳定性判据确定${A_a}$

    表  1  各关节对应的转角

    关节欧拉角参数说明
    腰关节 ${\theta _1}$ 俯身(绕Y轴)
    ${\theta _2}$ 转身(绕Z轴)
    ${\theta _3}$ 侧身(绕X轴)
    左肩关节 ${\theta _4}$ 左右摆(横摆)
    ${\theta _5}$ 前后摆(纵摆)
    右肩关节 ${\theta _6}$ 左右摆(横摆)
    ${\theta _{\rm{7}}}$ 前后摆(纵摆)
    左髋关节 ${\theta _{\rm{8}}}$ 左右摆(横摆)
    ${\theta _{\rm{9}}}$ 前后摆(纵摆)
    右髋关节 ${\theta _{10}}$ 左右摆(横摆)
    ${\theta _{11}}$ 前后摆(纵摆)
    下载: 导出CSV

    表  2  仿人机器人参数表

    参数上肢下肢躯干和头部总体
    质量/kg 3.629 11.685 41.948 72.576
    长度/m 0.709 6 0.975 0.535 1.80
    下载: 导出CSV

    表  3  步态参数选择

    腿摆幅Al/(°)步幅/m摆动角频率/(rad·s−1)周期T/s速度v/(km·h−1)胳膊摆幅Aa/(°)最大转身力矩/(N·m)P0/WP1/WP/W
    12 0.4 3.890 1.615 1.8 10 3.485 22.31 0.33 22.64
    15 0.5 3.884 1.618 2.2 18 3.808 32.75 1.06 33.81
    18 0.6 3.877 1.621 2.7 20 4.621 45.42 1.33 46.75
    21 0.7 3.868 1.624 3.1 22 5.376 60.23 1.66 61.89
    24 0.8 3.858 1.629 3.5 26 5.927 77.14 2.33 79.47
    下载: 导出CSV

    表  4  通过增大步频提高速度(腿的摆幅为18°)

    摆动角频率ω/(rad·s−1)速度v/(km·h−1)胳膊摆幅Aa/(°)最大转身力矩/(N·m)P0/WP1/WP/W
    2.1541.5141.58025.235.7931.02
    2.5851.8162.20130.285.8936.17
    3.1592.2183.17637.014.8841.89
    3.8772.7204.62145.421.3346.75
    4.4513.1225.78852.145.8457.98
    5.0263.5247.24758.8811.9770.85
    5.6003.9268.67465.6022.0287.62
    6.1744.3289.87472.3336.29108.62
    6.7494.73011.59079.0654.88133.94
    7.3235.13013.93085.7976.72162.51
    下载: 导出CSV
  • [1] 朱洪波. 仿人机器人高效步行模式生成与高稳定动态行走控制方法研究[D]. 合肥: 中国科学技术大学, 2017.

    Zhu H B. Research on energy-efficient gait pattern generation and control for humanoid robot[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese).
    [2] 王丽杨, 刘治, 曾小杰, 等. 基于能效优化的两足机器人步态控制方法[J]. 控制理论与应用, 2011, 28(5): 667-674

    Wang L Y, Liu Z, Zeng X J, et al. Gait control based on energy-efficiency optimization for biped robots[J]. Control Theory & Applications, 2011, 28(5): 667-674 (in Chinese)
    [3] 杨亮, 傅瑜, 付根平, 等. 基于能效优化的仿人机器人跑步步态优化与控制[J]. 计算机科学, 2016, 43(6): 270-275 doi: 10.11896/j.issn.1002-137X.2016.06.053

    Yang L, Fu Y, Fu G P, et al. Running gait planning and control for humanoid robot based on energy efficiency optimization[J]. Computer Science, 2016, 43(6): 270-275 (in Chinese) doi: 10.11896/j.issn.1002-137X.2016.06.053
    [4] Shin H K, Kim B K. Energy-efficient gait planning and control for biped robots utilizing the allowable ZMP region[J]. IEEE Transactions on Robotics, 2014, 30(4): 986-993 doi: 10.1109/TRO.2014.2305792
    [5] KhazeniFard A, Bahrami F, Andani M E, et al. An energy efficient gait trajectory planning algorithm for a seven linked biped robot using movement elements[C]//Proceedings of the 23rd Iranian Conference on Electrical Engineering. Tehran, Iran: IEEE, 2015: 1006-1011.
    [6] Ding J T, Zhou C X, Xiao X H. Energy-efficient bipedal gait pattern generation via CoM acceleration optimization[C]//Proceedings of the 18th International Conference on Humanoid Robots. Beijing, China: IEEE, 2018: 238-244.
    [7] Wang M Y, Wang R C, Zhao J H, et al. An optimized algorithm based on energy efficiency for gait planning of humanoid robots[C]//Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society. Washington, DC, USA: IEEE, 2018: 5612-5617.
    [8] Liu Y X, Zang X Z, Wang C, et al. A bio-inspired musculoskeletal model of the lower limb for energy economical bipedal walking[C]//Proceedings of the 3rd IEEE International Conference on Robotic Computing. Naples, Italy: IEEE, 2019: 288-292.
    [9] Hsu H K, Huang H P, Huang M B. A real-time optimal energy-saving walking pattern generator based on gradient descent method and linear quadratic control[J]. Advanced Robotics, 2019, 33(10): 487-507 doi: 10.1080/01691864.2019.1600425
    [10] 王继祥, 王立华, 迟连坤, 等. 基于MATLAB与ADAMS的双足步行机器人特性研究[J]. 机械与电子, 2018, 36(3): 69-73 doi: 10.3969/j.issn.1001-2257.2018.03.017

    Wang J X, Wang L H, Chi L K, et al. Research on characteristics of biped walking robot based on MATLAB and ADAMS[J]. Machinery & Electronics, 2018, 36(3): 69-73 (in Chinese) doi: 10.3969/j.issn.1001-2257.2018.03.017
    [11] McGeer T. Passive dynamic walking[J]. The International Journal of Robotics Research, 1990, 9(2): 62-82 doi: 10.1177/027836499000900206
    [12] 倪修华, 陈维山, 刘军考, 等. 一种由人类步行启发的半被动双足步行机器人[J]. 中南大学学报, 2011, 42(4): 1028-1034

    Ni X H, Chen W S, Liu J K, et al. A quasi-passive dynamic walker inspired by human walking[J]. Journal of Central South University, 2011, 42(4): 1028-1034 (in Chinese)
    [13] 夏泽洋, 陈恳, 刘莉, 等. 面向仿人机器人自然步态规划的人体步行实验分析[J]. 机器人, 2008, 30(1): 41-46 doi: 10.3321/j.issn:1002-0446.2008.01.008

    Xia Z Y, Chen K, Liu L, et al. Experimental analysis on human locomotion for natural gait planning of humanoid robots[J]. Robot, 2008, 30(1): 41-46 (in Chinese) doi: 10.3321/j.issn:1002-0446.2008.01.008
    [14] 李敬, 黄强, 余张国, 等. 人体步行规律与仿人机器人步态规划[J]. 中国科学: 信息科学, 2012, 42(9): 1067-1080 doi: 10.1360/112012-342

    Li J, Huang Q, Yu Z G, et al. Human walking mechanism and gait planning of humanoid robots[J]. Scientia Sinica Informationis, 2012, 42(9): 1067-1080 (in Chinese) doi: 10.1360/112012-342
    [15] Zhu H B, Luo M Z, Mei T, et al. Energy-efficient bio-inspired gait planning and control for biped robot based on human locomotion analysis[J]. Journal of Bionic Engineering, 2016, 13(2): 271-282 doi: 10.1016/S1672-6529(16)60300-1
    [16] 孙敏, 范守文. 基于能耗指标的拟人机器人步态优化与分析[J]. 机械设计与研究, 2007, 23(2): 52-54, 59 doi: 10.3969/j.issn.1006-2343.2007.02.013

    Sun M, Fan S W. Optimization and analysis for gait of humanoid robot based on energy consumption index[J]. Machine Design and Research, 2007, 23(2): 52-54, 59 (in Chinese) doi: 10.3969/j.issn.1006-2343.2007.02.013
    [17] 金亚平. 单摆周期的相图求法[J]. 大学物理, 2000, 19(10): 6-7, 11 doi: 10.3969/j.issn.1000-0712.2000.10.002

    Jin Y P. The period of a simple pendulum calculated by its phase diagram[J]. College Physics, 2000, 19(10): 6-7, 11 (in Chinese) doi: 10.3969/j.issn.1000-0712.2000.10.002
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  140
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2020-08-05

目录

    /

    返回文章
    返回