留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4钛合金仿生骨植入体单元结构力学性能分析

陈轲 云忠 周俊

陈轲,云忠,周俊. TC4钛合金仿生骨植入体单元结构力学性能分析[J]. 机械科学与技术,2020,39(8):1277-1282 doi: 10.13433/j.cnki.1003-8728.20190263
引用本文: 陈轲,云忠,周俊. TC4钛合金仿生骨植入体单元结构力学性能分析[J]. 机械科学与技术,2020,39(8):1277-1282 doi: 10.13433/j.cnki.1003-8728.20190263
Chen Ke, Yun Zhong, Zhou Jun. Mechanical Analysis of Bionic Bone Implant Cell Structure of TC4 Titanium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1277-1282. doi: 10.13433/j.cnki.1003-8728.20190263
Citation: Chen Ke, Yun Zhong, Zhou Jun. Mechanical Analysis of Bionic Bone Implant Cell Structure of TC4 Titanium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1277-1282. doi: 10.13433/j.cnki.1003-8728.20190263

TC4钛合金仿生骨植入体单元结构力学性能分析

doi: 10.13433/j.cnki.1003-8728.20190263
基金项目: 浙江省重中之重学科开放基金项目(GK170201201003)资助
详细信息
    作者简介:

    陈轲(1994−),硕士研究生,研究方向为生物材料的3D打印技术,chenke_csu@163.com

    通讯作者:

    云忠,教授,博士生导师,yunzhong@csu.edu.cn

  • 中图分类号: TH122

Mechanical Analysis of Bionic Bone Implant Cell Structure of TC4 Titanium Alloy

  • 摘要: 为解决钛合金骨仿生骨植入体弹性模量与人骨弹性模量不匹配的问题,采用多孔结构的钛合金骨植入体使其与自体骨的力学性能相适应。根据骨骼部位密度不同力学参数不同的特点,设计了开口杆状单元、开口柱状单元、中心球单元的微孔单元结构,并在不同的结构尺寸下得到11种模型。对这11种模型进行静力学仿真,得到受轴向压缩载荷时骨植入体结构的最大等效应力和应变分布,以及弹性模量数据;采用SLM技术将TC4钛合金粉末加工成试样,做压缩和三点弯曲试验。结果表明,开口杆状单元适用于具有较高的弹性模量抗弯强度的骨骼重建,开口柱状单元适用于弹性模量范围较大的骨骼重建,而中心球单元适合弹性模量较低且变化范围较小的骨骼重建。
  • 图  1  两种细观结构单元模型

    图  2  3种力学单元仿生骨结构

    图  3  简化模型结构及仿生骨建模

    图  4  开口杆状单元结构施加轴向力36000 N的应力应变图

    图  5  不同加载力下各模型的最大等效应力应变

    图  6  加工完成后的试验试样

    图  7  骨植入体模型断裂形式

    图  8  各模型压缩试验应力应变曲线

    图  9  弯曲试验试件的载荷-位移曲线图

    表  1  仿生骨结构模型部分参数

    结构编号孔尺寸/mm密度ρ/(g·cm−3)
    x = yz
    开口杆状单元 1 1 0.8 2.13
    2 1 1 2.0
    3 1 1.2 1.84
    开口柱状单元 4 1.2 0.6 2.09
    5 1.2 0.8 2.05
    6 1.2 1.0 2.0
    7 1.2 1.2 1.91
    8 1.2 1.3 1.80
    中心球单元 9 0.9 2.05
    10 0.97 1.97
    11 1 1.84
    下载: 导出CSV

    表  2  理论计算弹性模量

    单元结构编号密度/(g·cm–3)计算弹性模量/${\rm{GPa}}$
    开口杆状 1 2.13 18.8
    2 2.0 17.6
    3 1.84 16.3
    开口柱状 4 2.09 16.1
    5 2.05 15.0
    6 2.0 14.3
    7 1.91 12.5
    8 1.80 11.2
    中心球 9 2.05 15.5
    10 1.97 15.3
    11 1.84 15.0
    下载: 导出CSV

    表  3  模型准静态压缩结果

    单元结构编号实际密度/(g·cm–3)抗压强度/MPa弹性模量/GPa
    开口杆状 1 2.16 442.7 19.8
    2 2.03 385.6 17.5
    3 1.85 334.2 16.4
    开口柱状 4 2.16 325.7 16.7
    5 2.07 291.6 13.3
    6 2.01 269.3 11.6
    7 1.92 257.2 10.1
    8 1.82 221.3 9.5
    中心球 9 2.16 330.2 13.2
    10 2.03 301.1 12.9
    11 1.85 298.6 12.8
    下载: 导出CSV

    表  4  各模型抗弯强度

    单元结构编号实际密度/(g·cm−3)抗弯强度/MPa
    开口杆状 1 2.16 344.7
    2 2.03 339.6
    3 1.85 327.3
    开口柱状 4 2.16 291.6
    5 2.07 234.5
    6 2.01 215.6
    7 1.92 198.6
    8 1.82 182.5
    中心球 9 2.07 310.6
    10 1.98 294.6
    11 1.86 286.2
    下载: 导出CSV

    表  5  部分骨骼力学参数[15-16]

    骨骼
    类型
    弹性模量/GPa抗压强度/MPa抗弯强度/MPa
    股骨 11.2~18.9 155~215 108~175
    胫骨 5.4~15.6 130~163 95~140
    肱骨 5.6~14.3 125~145
    桡骨 3.0~11.2 96~154
    下载: 导出CSV
  • [1] 李洋, 陈长军, 王晓南, 等. 生物医用多孔钛及钛合金的研究进展[J]. 现代制造工程, 2015,(7): 144-148 doi: 10.3969/j.issn.1671-3133.2015.07.029

    Li Y, Chen C J, Wang X N, et al. Research progress on biomedical porous titanium and titanium alloy[J]. Modern Manufacturing Engineering, 2015,(7): 144-148 (in Chinese) doi: 10.3969/j.issn.1671-3133.2015.07.029
    [2] 祝天宇. 人工骨多孔钛材料性能测试与微切削仿真实验研究[D]. 江苏镇江: 江苏科技大学, 2016.

    Zhu T Y. Performance testing and micro cutting simulation of artificial bone porous titanium materials[D]. Jiangsu Zhenjiang: Jiangsu University of Science and Technology, 2016 (in Chinese).
    [3] McElhaney J H, Fogle J L, Melvin J W, et al. Mechanical properties of cranial bone[J]. Journal of Biomechanics, 1970, 3(5): 495-496, IN5, 497-511 doi: 10.1016/0021-9290(70)90059-X
    [4] Beaupre G S, Hayes W C. Finite element analysis of a three-dimensional open-celled model for trabecular bone[J]. Journal of Biomechanical Engineering, 1985, 107(3): 249-256 doi: 10.1115/1.3138550
    [5] Charrière E, Lemaitre J, Zysset P. Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties[J]. Biomaterials, 2003, 24(5): 809-817 doi: 10.1016/S0142-9612(02)00406-4
    [6] 杨立军, 张佳, 王哲, 等. 承力骨支架微孔结构设计及力学特性有限元分析[J]. 机械设计与制造, 2017,(7): 157-160 doi: 10.3969/j.issn.1001-3997.2017.07.040

    Yang L J, Zhang J, Wang Z, et al. Design and finite element analysis of the mechanical properties of cellular structure of human load-bearing bone scaffold[J]. Machinery Design & Manufacture, 2017,(7): 157-160 (in Chinese) doi: 10.3969/j.issn.1001-3997.2017.07.040
    [7] Wieding J, Wolf A, Bader R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37: 56-68 doi: 10.1016/j.jmbbm.2014.05.002
    [8] Rafi H K, Karthik N V, Gong H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 3872-3883 doi: 10.1007/s11665-013-0658-0
    [9] 杨文静, 乌日开西·艾依提, 王娟, 等. 基于SLM制备的Ti-6Al-4V人工骨支架的结构设计与力学性能分析[J]. 稀有金属材料与工程, 2017, 46(10): 2993-2998

    Yang W J, Aiyiti W, Wang J, et al. Structure design and mechanical property analysis of Ti-6Al-4V artificial bone scaffold built on SLM[J]. Rare Metal Materials and Engineering, 2017, 46(10): 2993-2998 (in Chinese)
    [10] Sallica-Leva E, Jardini A L, Fogagnolo J B. Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 26: 98-108 doi: 10.1016/j.jmbbm.2013.05.011
    [11] 王颖坚. 松质骨的细观力学研究评述[J]. 力学进展, 1996, 26(3): 416-423 doi: 10.3321/j.issn:1000-0992.1996.03.010

    Wang Y J. A review on the micromechanical study of cancellous bone[J]. Advances in Mechanics, 1996, 26(3): 416-423 (in Chinese) doi: 10.3321/j.issn:1000-0992.1996.03.010
    [12] 顾志华. 骨伤生物力学基础[M]. 天津: 天津大学出版社, 1990

    Gu Z H. Biomechanical basis of bone injury[M]. Tianjin: Tianjin University Press, 1990 (in Chinese)
    [13] 肖振楠, 刘婷婷, 廖文和, 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9): 81-89

    Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Journal of Lasers, 2017, 44(9): 81-89 (in Chinese)
    [14] Katti K S. Biomaterials in total joint replacement[J]. Colloids and Surfaces B: Biointerfaces, 2004, 39(3): 133-142 doi: 10.1016/j.colsurfb.2003.12.002
    [15] 王尚城, 王冬梅, 汪方, 等. 人骨拉伸和压缩力学的性能测试[J]. 中国组织工程研究, 2013, 17(7): 1180-1184 doi: 10.3969/j.issn.2095-4344.2013.07.008

    Wang S C, Wang D M, Wang F, et al. Tensile and compressive mechanical property of human bone tissue[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(7): 1180-1184 (in Chinese) doi: 10.3969/j.issn.2095-4344.2013.07.008
    [16] 王勃, 樊瑜波, 陈孟诗. 国人的股骨和胫骨各向异性力学参数和轴向流变特性测试[J]. 生物医学工程学杂志, 2006, 23(3): 535-538 doi: 10.3321/j.issn:1001-5515.2006.03.016

    Wang B, Fan Y B, Chen M S. Testing of anisotropic modulus and fluid characteristic of Chinese femur and tibia[J]. Journal of Biomedical Engineering, 2006, 23(3): 535-538 (in Chinese) doi: 10.3321/j.issn:1001-5515.2006.03.016
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  69
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2020-08-05

目录

    /

    返回文章
    返回