留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最大相关峭度反褶积与傅里叶分解方法相结合的滚动轴承故障诊断

黄斯琪 郑近德 潘海洋 童靳于 刘庆运

黄斯琪,郑近德,潘海洋, 等. 最大相关峭度反褶积与傅里叶分解方法相结合的滚动轴承故障诊断[J]. 机械科学与技术,2020,39(8):1163-1170 doi: 10.13433/j.cnki.1003-8728.20190253
引用本文: 黄斯琪,郑近德,潘海洋, 等. 最大相关峭度反褶积与傅里叶分解方法相结合的滚动轴承故障诊断[J]. 机械科学与技术,2020,39(8):1163-1170 doi: 10.13433/j.cnki.1003-8728.20190253
Huang Siqi, Zheng Jinde, Pan Haiyang, Tong Jinyu, Liu Qingyun. Rolling Bearing Fault Diagnosis of Maximum Correlation Kurtosis Deconvolution Combining with Fourier Decomposition Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1163-1170. doi: 10.13433/j.cnki.1003-8728.20190253
Citation: Huang Siqi, Zheng Jinde, Pan Haiyang, Tong Jinyu, Liu Qingyun. Rolling Bearing Fault Diagnosis of Maximum Correlation Kurtosis Deconvolution Combining with Fourier Decomposition Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1163-1170. doi: 10.13433/j.cnki.1003-8728.20190253

最大相关峭度反褶积与傅里叶分解方法相结合的滚动轴承故障诊断

doi: 10.13433/j.cnki.1003-8728.20190253
基金项目: 国家重点研发计划项目(2017YFC0805100)、国家自然科学基金项目(51505002)及安徽省高校自然科学研究重点项目(KJ2019A0053,KJ2019A092)资助
详细信息
    作者简介:

    黄斯琪(1994−),硕士研究生,研究方向为设备状态监测与故障诊断,hsq15755076730@126.com

    通讯作者:

    郑近德,副教授、硕士生导师,博士,lqdlzheng@126.com

  • 中图分类号: TTH165+.3; TH17

Rolling Bearing Fault Diagnosis of Maximum Correlation Kurtosis Deconvolution Combining with Fourier Decomposition Method

  • 摘要: 针对强背景噪声环境下滚动轴承故障特征难以提取的问题,提出一种基于最大相关峭度反褶积(MCKD)与傅里叶分解方法(FDM)相结合的滚动轴承故障诊断方法。首先采用MCKD对振动信号去噪、提取与故障相关的冲击成分;其次,采用FDM对去噪信号进行分解,得到若干个瞬时频率具有物理意义的傅里叶固有频带函数和一个残余分量之和;第三,依据各个模态与去噪信号的相关性提取包含故障信息的最优模态分量,并对它们进行重构;最后,计算重构信号的包络谱,从谱图中读取故障信息。将所提故障诊断方法应用于滚动轴承故障仿真和实验数据分析,并通过与现有方法进行对比,结果表明,该方法优于所对比的方法。
  • 图  1  冲击信号波形

    图  2  仿真信号的时域波形

    图  3  仿真信号包络谱

    图  4  仿真信号MCKD去噪后的傅里叶分解结果

    图  5  4种方法分解重构后的时城波形和包络谱

    图  6  滚动轴承模拟故障试验台

    图  7  内圈故障的时域波形

    图  8  内圈故障的包络谱

    图  9  FDM分解的前20个FIBF分量

    图  10  3种方法分解重构后的时城波形和包络谱

    表  1  FIBF的相关系数

    分量y1y2y3y4y5y6y7
    相关系数 0.0001 0.0899 0.0907 0.1438 0.2302 0.2271 0.2199
    分量 y8 y9 y10 y11 y12 y13 y14
    相关系数 0.2827 0.3213 0.2926 0.3362 0.3996 0.2372 0.2455
    分量 y15 y16 y17 y18 y19 y20 r
    相关系数 0.1674 0.1795 0.1592 0.1801 0.1751 0.0586 0
    下载: 导出CSV

    表  2  FIBF与去噪信号的相关系数

    分量y1y2y3y4y5y6y7
    相关系数 0.0007 0.0738 0.1642 0.0946 0.1329 0.1313 0.1131
    分量 y8 y9 y10 y11 y12 y13 y14
    相关系数 0.1278 0.1354 0.1179 0.1766 0.2166 0.2061 0.2884
    分量 y15 y16 y17 y18 y19 y20 y21
    相关系数 0.2664 0.3246 0.2479 0.2554 0.2623 0.2147 0.2071
    分量 y22 y23 y24 y25 y26 y27 y28
    相关系数 0.1701 0.2032 0.1482 0.1208 0.1099 0.1687 0.1023
    分量 y29 y30 y31 y32 y33 y34 r
    相关系数 0.1011 0.0879 0.0925 0.0745 0.0547 0.0705 0
    下载: 导出CSV
  • [1] Brown D N. Envelope analysis detects bearing faults before major damage occurs[J]. Pulp and Paper, 1989, 63(13): 113-117
    [2] 郑近德, 程军圣, 杨宇. 一种新的估计瞬时频率的方法-经验包络法[J]. 振动与冲击, 2012, 31(17): 86-90 doi: 10.3969/j.issn.1000-3835.2012.17.014

    Zheng J D, Cheng J S, Yang Y. A new instantaneous frequency estimation approach-empirical envelope method[J]. Journal of Vibration and Shock, 2012, 31(17): 86-90 (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.17.014
    [3] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995 doi: 10.1098/rspa.1998.0193
    [4] 于德介, 程军圣, 杨宇. 机械故障诊断的Hilbert-Huang变换方法[M]. 北京: 科学出版社, 2007

    Yu D J, Cheng J S, Yang Y. Hilbert-Huang transform method for mechanical fault diagnosis[M]. Beijing: Science Press, 2007 (in Chinese) .
    [5] Hou T Y, Yan M P, Wu Z H. A variant of the EMD method for multi-scale data[J]. Advances in Adaptive Data Analysis, 2009, 1(4): 483-516 doi: 10.1142/S179353690900031X
    [6] Xu Y S, Zhang H Z. Recent mathematical developments on empirical mode decomposition[J]. Advances in Adaptive Data Analysis, 2009, 1(4): 681-702 doi: 10.1142/S1793536909000242
    [7] 高强, 杜小山, 范虹, 等. 滚动轴承故障的EMD诊断方法研究[J]. 振动工程学报, 2007, 20(1): 15-18 doi: 10.3969/j.issn.1004-4523.2007.01.003

    Gao Q, Du X S, Fan H, et al. An empirical mode decomposition based method for rolling bearing fault diagnosis[J]. Journal of Vibration Engineering, 2007, 20(1): 15-18 (in Chinese) doi: 10.3969/j.issn.1004-4523.2007.01.003
    [8] 蔡艳平, 李艾华, 石林锁, 等. 基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J]. 振动与冲击, 2011, 30(2): 167-172, 191 doi: 10.3969/j.issn.1000-3835.2011.02.033

    Cai Y P, Li A H, Shi L S, et al. Roller bearing fault detection using improved envelope spectrum analysis based on EMD and spectrum kurtosis[J]. Journal of Vibration and Shock, 2011, 30(2): 167-172, 191 (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.02.033
    [9] 李华, 伍星, 刘韬, 等. 基于信息熵优化变分模态分解的滚动轴承故障特征提取[J]. 振动与冲击, 2018, 37(23): 219-225

    Li H, Wu X, Liu T, et al. Bearing fault feature extraction based on VMD optimized with information entropy[J]. Journal of Vibration and Shock, 2018, 37(23): 219-225 (in Chinese)
    [10] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544 doi: 10.1109/TSP.2013.2288675
    [11] 姜战伟, 郑近德, 潘海洋, 等. POVMD与包络阶次谱的变工况滚动轴承故障诊断[J]. 振动、测试与诊断, 2017, 37(3): 609-616

    Jiang Z W, Zheng J D, Pan H Y, et al. Fault diagnosis under variable conditions based on parameter optimized variational mode decomposition and envelope order spectrum[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(3): 609-616 (in Chinese)
    [12] Singh P, Joshi S D, Patney R K, et al. The Fourier decomposition method for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2199): 20160871 doi: 10.1098/rspa.2016.0871
    [13] 张国瑞, 王旭元, 郭文斌. 基于傅里叶分解与1.5维Teager能量谱的滚动轴承故障诊断方法[J]. 机械传动, 2017, 41(3): 191-196

    Zhang G R, Wang X Y, Guo W B. Fault diagnosis method of rolling bearing based on Fourier decomposition method and 1.5-dimensional Teager energy spectrum[J]. Journal of Mechanical Transmission, 2017, 41(3): 191-196 (in Chinese)
    [14] 张瑞. 旋转机械碰摩声发射故障诊断研究[D]. 南京: 东南大学, 2016

    Zhang R. Research on fault diagnosis in rotary machinery acoustic emission signal[D]. Nanjing: Nanjing Southeast University, 2016 (in Chinese)
    [15] Wiggins R A. Minimum entropy deconvolution[J]. Geoexploration, 1978, 16(1-2): 21-35 doi: 10.1016/0016-7142(78)90005-4
    [16] Li G, Zhao Q. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to vibration based fault detection[J]. Journal of Sound and Vibration, 2017, 390: 218-231 doi: 10.1016/j.jsv.2016.11.033
    [17] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1): 88-94 doi: 10.3901/JME.2013.01.088

    Wang H C, Chen J, Dong G M. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition[J]. Journal of Mechanical Engineering, 2013, 49(1): 88-94 (in Chinese) doi: 10.3901/JME.2013.01.088
    [18] McDonald G L, Zhao Q, Zuo M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255 doi: 10.1016/j.ymssp.2012.06.010
    [19] 唐贵基, 王晓龙. 最大相关峭度解卷积结合1.5维谱的滚动轴承早期故障特征提取方法[J]. 振动与冲击, 2015, 34(12): 79-84

    Tang G J, Wang X L. Feature extraction for rolling bearing incipient fault based on maximum correlated kurtosis deconvolution and 1.5 dimension spectrum[J]. Journal of Vibration and Shock, 2015, 34(12): 79-84 (in Chinese)
    [20] 周福昌. 基于循环平稳信号处理的滚动轴承故障诊断方法研究[D]. 上海: 上海交通大学, 2006

    Zhou F C. Research on the fault diagnosis method of rolling element bearing based on cyclostationary signal processing[D]. Shanghai: Shanghai Jiaotong University, 2006 (in Chinese)
    [21] 刘文明. 强背景噪声下列车轴承振动信号故障特征分离方法研究[D]. 石家庄: 石家庄铁道大学, 2018

    Liu W M. Research on the fault characteristic separation method of train bearings vibration signal under strong background noise[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2018 (in Chinese)
    [22] 陈果. 滚动轴承早期故障的特征提取与智能诊断[J]. 航空学报, 2009, 30(2): 362-367 doi: 10.3321/j.issn:1000-6893.2009.02.028

    Chen G. Feature Extraction and intelligent diagnosis for ball bearing early faults[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 362-367 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.02.028
    [23] Miao Y H, Zhao M, Lin J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 92: 173-195 doi: 10.1016/j.ymssp.2017.01.033
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  85
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-13
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2020-08-05

目录

    /

    返回文章
    返回