留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合机床测头的城轨车体底架覆盖测量优化方法

郑晓军 司昊 鲍洪阳

郑晓军,司昊,鲍洪阳. 结合机床测头的城轨车体底架覆盖测量优化方法[J]. 机械科学与技术,2020,39(8):1237-1241 doi: 10.13433/j.cnki.1003-8728.20190252
引用本文: 郑晓军,司昊,鲍洪阳. 结合机床测头的城轨车体底架覆盖测量优化方法[J]. 机械科学与技术,2020,39(8):1237-1241 doi: 10.13433/j.cnki.1003-8728.20190252
Zheng Xiaojun, Si Hao, Bao Hongyang. Optimization Method for Underframe Coverage Measurement for Urban Rail Vehicle Body Combined with Machine Tool Probe[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1237-1241. doi: 10.13433/j.cnki.1003-8728.20190252
Citation: Zheng Xiaojun, Si Hao, Bao Hongyang. Optimization Method for Underframe Coverage Measurement for Urban Rail Vehicle Body Combined with Machine Tool Probe[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1237-1241. doi: 10.13433/j.cnki.1003-8728.20190252

结合机床测头的城轨车体底架覆盖测量优化方法

doi: 10.13433/j.cnki.1003-8728.20190252
基金项目: 辽宁省自然科学基金指导计划项目(20170540138)与国家重点研发计划项目(2016YFB1200505)资助
详细信息
    作者简介:

    郑晓军(1982−),副教授,博士,研究方向为智能计算、CAD仿真与集成优化,zhengxj@djtu.edu.cn

  • 中图分类号: TH161

Optimization Method for Underframe Coverage Measurement for Urban Rail Vehicle Body Combined with Machine Tool Probe

  • 摘要: 为进一步提高当前数控机床对城轨车体底架装夹误差的测量效率及精度,利用英国雷尼绍公司研发的高精度RMP60机床测头,以最小化机床测头的补偿点数量为目标,分别提出了基于分组规划法与动态规划法的城轨车体底架覆盖测量方法,给出了覆盖测量方法的步骤,实现了底架上滑槽点的全覆盖。仿真结果表明,在相同条件下,机床测头利用动态规划法完成对滑槽点全覆盖时所获得的补偿点数量比分组规划法缩减12.9%,且重叠率降低4.47%,所以本文所提方法能够有效提升机床对城轨车体底架滑槽的测量效率及精度。
  • 图  1  底架特征及坐标轴方向

    图  2  滑槽横截面特征

    图  3  二分法获取滑槽点示意图

    图  4  滑槽段分组流程图

    图  5  基于动态规划法的底架滑槽点全覆盖

    图  6  分组规划法覆盖滑槽点分布图

    图  7  动态规划法覆盖滑槽点分布图

    表  1  滑槽点获取的伪代码

    输入:滑槽段Li的长度li,覆盖检测半径R,滑槽段上测量点pt,测量点坐标( xi , yi ),点集P 为空集,Li = 1,滑槽段起始坐标( xs , ys ),终点坐标( xe , ye )。
    输出:滑槽点点集P = { pi|i = 1, 2, ··· , n} 。
    if $l_i$<$2 \cdot R$
      add the $p_t$ into $P$
    else while $l_i \geqslant 2 \cdot R$
       do $l_i = l_i/2$
       $L_i = 2 \cdot L_i$
       end
       for $j \leftarrow 0 \; {\rm{to}} \; L_i$
        $x_i = x_s + (x_e - x_s) \cdot j/L_i$
        $y_i = y_s + (y_e - y_s) \cdot j/L_i$
        add the $p_t$ into $P$
       end
    end
    下载: 导出CSV

    表  2  两种算法运行结果对比

    算法滑槽点数量/个补偿点数量/个重叠率/%
    分组规划法71330310.27
    动态规划法7132645.80
    下载: 导出CSV
  • [1] 岳译新, 刘永强, 刘亚妮, 等. ZZL1车体结构模块化设计与有限元分析[J]. 机车电传动, 2013, (3): 49-52 doi: 10.3969/j.issn.1000-128X.2013.03.013

    Yue Y X, Liu Y Q, Liu Y N, et al. Structure modular design and finite element analysis for ZZL1 vehicles[J]. Electric Drive for Locomotives, 2013, (3): 49-52 (in Chinese) doi: 10.3969/j.issn.1000-128X.2013.03.013
    [2] 王飞. 基于雷尼绍测头的西门子840D sl的测量循环调试及应用[J]. 制造技术与机床, 2018, (7): 172-175

    Wang F. Adjustment and application of measurement cycle based on Siemens 840D sl[J]. Manufacturing Technology & Machine Tool, 2018, (7): 172-175 (in Chinese)
    [3] 齐昉, 孙艳蕊. 无线传感器网络覆盖效率优化仿真[J]. 计算机仿真, 2017, 34(8): 297-301, 345 doi: 10.3969/j.issn.1006-9348.2017.08.063

    Qi F, Sun Y R. Wireless sensor network coverage efficiency optimization simulation[J]. Computer Simulation, 2017, 34(8): 297-301, 345 (in Chinese) doi: 10.3969/j.issn.1006-9348.2017.08.063
    [4] 王楚柯, 陆安江, 吴意乐. 自适应果蝇优化算法在WSN节点覆盖优化中的应用[J]. 微电子学与计算机, 2019, 36(2): 11-15

    Wang C K, Lu A J, Wu Y L. Application of adaptive fruit fly optimization algorithm in WSN node coverage optimization[J]. Microelectronics & Computer, 2019, 36(2): 11-15 (in Chinese)
    [5] 李冠男, 董凌艳, 徐红丽, 等. 群机器人区域覆盖方法研究[J]. 机器人, 2017, 39(5): 670-679

    Li G N, Dong L Y, Xu H L, et al. Research on region coverage approach with swarm robots[J]. Robot, 2017, 39(5): 670-679 (in Chinese)
    [6] 吴意乐, 何庆, 徐同伟. 改进自适应粒子群算法在WSN覆盖优化中的应用[J]. 传感技术学报, 2016, 29(4): 559-565 doi: 10.3969/j.issn.1004-1699.2016.04.016

    Wu Y L, He Q, Xu T W. Application of improved adaptive particle swarm optimization algorithm in WSN coverage optimization[J]. Chinese Journal of Sensors and Actuators, 2016, 29(4): 559-565 (in Chinese) doi: 10.3969/j.issn.1004-1699.2016.04.016
    [7] 丁晨阳, 彭军. 基于改进粒子群优化算法的传感器部署机制[J]. 仪表技术与传感器, 2016, (12): 176-180 doi: 10.3969/j.issn.1002-1841.2016.12.043

    Ding C Y, Peng J. Sensor deployment scheme based on improved particle swarm optimization[J]. Instrument Technique and Sensor, 2016, (12): 176-180 (in Chinese) doi: 10.3969/j.issn.1002-1841.2016.12.043
    [8] 刘静静, 郑倩倩. 基于改进遗传算法的无线网络覆盖算法[J]. 现代电子技术, 2016, 39(18): 9-11, 16

    Liu J J, Zheng Q Q. Wireless network coverage algorithm based on improved genetic algorithm[J]. Modern Electronics Technique, 2016, 39(18): 9-11, 16 (in Chinese)
    [9] Tian J W, Gao M J, Ge G S. Wireless sensor network node optimal coverage based on improved genetic algorithm and binary ant colony algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016(1): 104 doi: 10.1186/s13638-016-0605-5
    [10] 张映锋, 张党, 任杉. 智能制造及其关键技术研究现状与趋势综述[J]. 机械科学与技术, 2019, 38(3): 329-338

    Zhang Y F, Zhang D, Ren S. Survey on current research and future trends of smart manufacturing and its key technologies[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(3): 329-338 (in Chinese)
    [11] 鞠萍华, 黄洛. 在线测量系统测头误差补偿技术研究[J]. 机械科学与技术, 2018, 37(1): 81-88

    Ju P H, Huang L. Research on error compensation of probe for on-line measurement system[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 81-88 (in Chinese)
    [12] 杲颖, 夏筱筠, 孙维堂. 基于速度箝制算法的数控机床定位精度的测量与补偿研究[J]. 组合机床与自动化加工技术, 2018,(6): 98-103

    Gao Y, Xia X J, Sun W T. Measurement and compensating research for positioning accuracy of CNC machine tools based on speed control algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018,(6): 98-103 (in Chinese)
    [13] Kuang C F, Hong E, Feng Q B, et al. A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement[J]. Measurement Science and Technology, 2007, 18(12): 3795-3800 doi: 10.1088/0957-0233/18/12/014
    [14] Liu C S, Lai J J, Luo Y T. Design of a measurement system for six-degree-of-freedom geometric errors of a linear guide of a machine tool[J]. Sensors, 2019, 19(1): 5
    [15] 张义民, 曹辉, 黄贤振. 基于蒙特卡洛法的铣削让刀误差概率分布预测[J]. 东北大学学报, 2015, 36(7): 985-990

    Zhang Y M, Cao H, Huang X Z. Probability distribution prediction of milling error generated by tool and artifact coupling deviation based on monte-carlo method[J]. Journal of Northeastern University, 2015, 36(7): 985-990 (in Chinese)
    [16] 李端, 钱富才, 李力, 等. 动态规划问题研究[J]. 系统工程理论与实践, 2007, 27(8): 56-64 doi: 10.3321/j.issn:1000-6788.2007.08.008

    Li D, Qian F C, Li L, et al. Research on dynamic programming[J]. Systems Engineering-Theory & Practice, 2007, 27(8): 56-64 (in Chinese) doi: 10.3321/j.issn:1000-6788.2007.08.008
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  31
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-15
  • 网络出版日期:  2020-08-26
  • 刊出日期:  2020-08-05

目录

    /

    返回文章
    返回