留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉末冶金单轴压制过程中的力学机制研究

孟凡净 逄明华 花少震 刘华博 程鹏飞 张涛 武正权

孟凡净, 逄明华, 花少震, 刘华博, 程鹏飞, 张涛, 武正权. 粉末冶金单轴压制过程中的力学机制研究[J]. 机械科学与技术, 2020, 39(7): 1128-1132. doi: 10.13433/j.cnki.1003-8728.20190232
引用本文: 孟凡净, 逄明华, 花少震, 刘华博, 程鹏飞, 张涛, 武正权. 粉末冶金单轴压制过程中的力学机制研究[J]. 机械科学与技术, 2020, 39(7): 1128-1132. doi: 10.13433/j.cnki.1003-8728.20190232
Meng Fanjing, Pang Minghua, Hua Shaozhen, Liu Huabo, Cheng Pengfei, Zhang Tao, Wu Zhengquan. Research of Mechanical Mechanism in Uniaxial Pressing Process of Powder Metallurgy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7): 1128-1132. doi: 10.13433/j.cnki.1003-8728.20190232
Citation: Meng Fanjing, Pang Minghua, Hua Shaozhen, Liu Huabo, Cheng Pengfei, Zhang Tao, Wu Zhengquan. Research of Mechanical Mechanism in Uniaxial Pressing Process of Powder Metallurgy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(7): 1128-1132. doi: 10.13433/j.cnki.1003-8728.20190232

粉末冶金单轴压制过程中的力学机制研究

doi: 10.13433/j.cnki.1003-8728.20190232
基金项目: 

国家自然科学基金项目 51605150

河南省科技攻关项目 192102210211

河南省科技攻关项目 192102210216

河南省高等学校重点科研项目 19B460002

河南省高等学校青年骨干教师培养计划项目 2019GGJS265

详细信息
    作者简介:

    孟凡净(1981-), 副教授, 博士, 研究方向为机械摩擦学、机构学, 粉末冶金, mengfanjing0901@126.com

  • 中图分类号: TH117

Research of Mechanical Mechanism in Uniaxial Pressing Process of Powder Metallurgy

  • 摘要: 粉末冶金是一项节能、节材、高效、近净成形的先进制造技术,粉末冶金压制过程中的力学理论是决定压制毛坯的致密性和均匀性,并对最终形成产品的质量有决定性影响的关键问题。本文利用离散单元法建立了粉末冶金单轴压制的离散元数值模型,研究了粉末颗粒单轴压制过程中的力链演变规律、应力变化规律及配位数、滑动分数等力学参数的变化规律。研究结果表明,随着上模的逐步下压,粉末颗粒间的细观力链的强度逐渐增强,压制后期细观力链也呈现出明显的沿y轴走向的方向性特性;xy向应力在压制初期较小,压制后期粉末颗粒系统的xy向应力大小随着上模的逐步下压基本上呈线性增长的变化趋势;配位数在压制初期较小,在压制后期则随着上模的逐步下压而逐渐增大,滑动分数在压制初期和后期较小,在压制中期则较大。
  • 图  1  粉末冶金单轴压制的离散元数值模型

    图  2  计算流程图

    图  3  粉末冶金单轴压制过程中的力链演变图

    图  4  x向应力变化

    图  5  y向应力变化

    图  6  配位数的变化规律

    图  7  滑动分数的变化规律

    表  1  模型参数

    参数名称 数值
    上模切向刚度ksp 200 GPa
    墙切向刚度ksd 200 GPa
    上模摩擦因数fp 0.25
    颗粒密度ρ 7 850 kg/m3
    颗粒泊松比ν 0.26
    颗粒数量N 1 200
    上模法向刚度knp 200 GPa
    墙法向刚度knd 200 GPa
    墙摩擦因数fd 0.25
    颗粒弹性剪切模量G 206 GPa
    颗粒摩擦因数fg 0.25
    下压速度u 0.1 m/s
    下载: 导出CSV
  • [1] 孙世杰.2013年北美地区粉末冶金行业发展报告[J].粉末冶金工业, 2013, 23(6):55-56 http://d.wanfangdata.com.cn/Thesis/Y2302124

    Sun S J. 2013 North American powder metallurgy industry development report[J]. Powder Metallurgy Industry, 2013, 23(6):55-56(in Chinese) http://d.wanfangdata.com.cn/Thesis/Y2302124
    [2] 韩凤麟.中国(大陆)粉末冶金零件行业2004年进展[J].粉末冶金技术, 2006, 24(1):56-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjjs200601013

    Han F L. Progress of China PM parts industry in 2004[J]. Powder Metallurgy Technology, 2006, 24(1):56-59(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmyjjs200601013
    [3] 谷曼.铁基粉末高速压制过程中粉体摩擦行为及致密化机理[D].合肥: 合肥工业大学, 2015

    Gu M. The frictional behavior and mechanism of densification of iron based powders in high velocity powder compaction[D]. Hefei: Hefei University of Technology, 2015(in Chinese)
    [4] Meng F J, Liu K, Qin T. Numerical analysis of multi-scale mechanical theory of densified powder compaction[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9):430 doi: 10.1007/s40430-018-1337-8
    [5] 张炜, 周剑, 于世伟, 等.离散元法金属粉末高速压制过程中力链特性量化研究[J].机械工程学报, 2018, 54(10):85-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201810012

    Zhang W, Zhou J, Yu S W, et al. Quantitative investigation on force chains of metal powder in high velocity compaction by using discrete element method[J]. Journal of Mechanical Engineering, 2018, 54(10):85-92(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201810012
    [6] Zhang H Z, Zhang L, Dong G Q, et al. Effects of annealing on high velocity compaction behavior and mechanical properties of iron-base PM alloy[J]. Powder Technology, 2016, 288:435-440 doi: 10.1016/j.powtec.2015.10.040
    [7] Zhang H Z, Zhang L, Dong G, et al. Effects of warm die on high velocity compaction behaviour and mechanical properties of iron based PM alloy[J]. Powder Metallurgy, 2016, 59(2):100-106 doi: 10.1179/1743290115Y.0000000019
    [8] 孟凡净, 刘焜.颗粒流润滑系统力传输行为的试验研究[J].摩擦学学报, 2018, 38(6):645-651 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcxxb201806004

    Meng F J, Liu K. Experimental study of force transmitting behaviors in the granular lubrication system[J]. Tribology, 2018, 38(6):645-651(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcxxb201806004
    [9] Meng F J, Liu K, Wang W. The force chains and dynamic states of granular flow lubrication[J]. Tribology Transactions, 2015, 58(1):70-78 doi: 10.1080/10402004.2014.947665
    [10] Wang W, Liu Y, Zhu G Q, et al. Using FEM-DEM coupling method to study three-body friction behavior[J]. Wear, 2014, 318(1-2):114-123 doi: 10.1016/j.wear.2014.06.023
    [11] 焦杨, 章新喜, 孔凡成, 等.湿颗粒聚团碰撞解聚过程的离散元法模拟[J].物理学报, 2015, 64(15):154501 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201515040

    Jiao Y, Zhang X X, Kong F C, et al. Discrete element simulation of impact disaggregation for wet granule agglomerate[J]. Acta Physica Sinica, 2015, 64(15):154501(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201515040
    [12] Yang Y, Chen Y M, Wang J A. Exploring the contact types within mixtures of different shapes at the steady state by DEM[J]. Powder Technology, 2016, 301:440-448 doi: 10.1016/j.powtec.2016.06.016
    [13] Meng F J, Meng X, Hua S Z, et al. Fluctuation and self-diffusion research about dry granular materials under shearing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(2):153 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=433b9576ce470bee7a49d58a8dc1c48a
    [14] Wang W, Gu W, Liu K. Force chain evolution and force characteristics of shearing granular media in Taylor-Couette geometry by DEM[J]. Tribology Transactions, 2015, 58(2):197-206 doi: 10.1080/10402004.2014.943829
    [15] 孟凡净, 刘焜.压力载荷对颗粒润滑界面动力学特性的影响[J].机械科学与技术, 2019, 38(3):379-385 doi: 10.13433/j.cnki.1003-8728.20180177

    Meng F J, Liu K. Influence of pressure load on dynamic characteristics of granular lubrication interface[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(3):379-385(in Chinese) doi: 10.13433/j.cnki.1003-8728.20180177
    [16] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65 doi: 10.1680/geot.1979.29.1.47
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  38
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-24
  • 刊出日期:  2020-07-05

目录

    /

    返回文章
    返回