留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型纯电动汽车后部碰撞电安全分析与设计

曾泽江 王丽娟 陈宗渝 欧阳威

曾泽江,王丽娟,陈宗渝, 等. 微型纯电动汽车后部碰撞电安全分析与设计[J]. 机械科学与技术,2020,39(6):948-953 doi: 10.13433/j.cnki.1003-8728.20190216
引用本文: 曾泽江,王丽娟,陈宗渝, 等. 微型纯电动汽车后部碰撞电安全分析与设计[J]. 机械科学与技术,2020,39(6):948-953 doi: 10.13433/j.cnki.1003-8728.20190216
Zeng Zejiang, Wang Lijuan, Chen Zongyu, Ouyang Wei. Analysis and Design of Electric Safety in Micro-BEV Rear Crash[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(6): 948-953. doi: 10.13433/j.cnki.1003-8728.20190216
Citation: Zeng Zejiang, Wang Lijuan, Chen Zongyu, Ouyang Wei. Analysis and Design of Electric Safety in Micro-BEV Rear Crash[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(6): 948-953. doi: 10.13433/j.cnki.1003-8728.20190216

微型纯电动汽车后部碰撞电安全分析与设计

doi: 10.13433/j.cnki.1003-8728.20190216
基金项目: 国家自然科学基金项目(51165034)与江西省自然科学基金项目(20132BAB206029)资助
详细信息
    作者简介:

    曾泽江(1993–),硕士研究生,研究方向为汽车被动安全设计与车身轻量化,ncuzzj2013@163.com

    通讯作者:

    王丽娟,副教授,博士,wjoker@163.com

  • 中图分类号: U469.72

Analysis and Design of Electric Safety in Micro-BEV Rear Crash

  • 摘要: 以某微型纯电动汽车为研究对象,分析其高压电气系统的结构特点,对高压线束进行细化建模,建立了含高压电气系统部件的整车有限元分析模型,选取后部追尾和柱撞两种碰撞工况进行仿真。结果表明,纯电动汽车在后部碰撞工况下高压线束受到破坏以及高压电部件存在安装支架强度不足的问题。进行改进设计后根据碰撞时高压电气系统的损伤情况,确立了纯电动汽车碰撞断电保护控制条件,制定了高压电安全防护控制策略,确保整车的高压电安全。
  • 图  1  汽车高压线束

    图  2  线束建模方式

    图  3  3D实体网格沙漏模式

    图  4  高压部件布置

    图  5  部分高压部件

    图  6  29 km/h后部柱面碰撞结果

    图  7  50 km/h后部全宽追尾碰撞结果

    图  8  29 km/h柱面碰撞后舱线束变形效果

    图  9  29 km/h柱面碰撞下线束应变

    图  10  29 km/h追尾碰撞下PCU安装支架应变

    图  11  23 km/h柱面碰撞下DC/DC安装支架应变

    图  12  整车断电控制方式

    图  13  后部碰撞工况下动力电池内加速度信号

    图  14  减速器与DC/DC的挤压过程

    图  15  减速器与DC/DC位置变化

    表  1  我国电动汽车法规的要求[5-6]

    要求GB/T 18384.1-2015电动汽车安全要求(动力电池)GB/T 31498-2015电动汽车碰撞后安全要求(整车)
    绝缘电阻、
    防触电
    没有交流电路或有交流电路但有防护绝缘电阻,
    Ri与它的最大工作电压之比应小于100 Ω/V。
    碰撞结束后的5~60 s,V1V2Vb分别小于
    30 VAC或60 VDC。
    有交流电路且没有附加防护,应小于500 Ω/V 碰撞结束后5~60 s,Ex < 0.2 J,Ey1+Ey2 < 0.2 J。
    移动距离 REESS连接端子间的爬行距离不大于
    0.25 U+5 mm
    碰撞后,REESS布置在乘员舱内不能出现位置移动,部件应保持于外壳内;舱外的REESS部件不能侵入到乘员舱。
    有害物质泄漏 排放危害气体浓度不会达到潜在危害浓度 碰撞结束后的30 min内,不能出现电解液溢入乘员舱,电解液溢出量小于5 L。
    产生的热量 REESS需要进行基于电流、电压或温度的监控 碰撞结束的30 min内不能发生起火、爆炸。
    过电流断开 REESS在一定条件下能够断开REESS电路 间接接触的电流大于0.2 A时其电阻应小于0.1 Ω。
    直接接触满足IPXXB级别保护。
    下载: 导出CSV

    表  2  断电控制策略矩阵

    序号工况断电需求
    1 碰撞速度≤23 km/h的100%后部全宽碰撞
    2 碰撞速度≥29 km/h的100%后部全宽碰撞
    3 碰撞速度≤23 km/h的后部柱面碰撞
    4 碰撞速度≥29 km/h的后部柱面碰撞
    下载: 导出CSV
  • [1] 张亚军, 任高晖, 李君杰. 基于某电动汽车高压电碰撞安全设计与防护[J]. 汽车安全与节能学报, 2017, 8(4): 388-396 doi: 10.3969/j.issn.1674-8484.2017.04.008

    Zhang Y J, Ren G H, Li J J. High voltage safety design and protection based on an electric vehicle collision[J]. Journal of Automotive Safety and Energy, 2017, 8(4): 388-396 (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.04.008
    [2] 《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6): 1-197 doi: 10.3969/j.issn.1001-7372.2017.06.001

    Editorial Department of China Journal of Highways. Review on China's automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30(6): 1-197 (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.001
    [3] Lee J K, Yeo J S, Jang M C. Mechanical durability and electrical durability of an aluminium-laminated lithium-ion polymer battery pack for a hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2010, 224(6): 765-773 doi: 10.1243/09544070JAUTO1388
    [4] 接桂利, 朱西产, 曹亦兴, 等. 电动汽车碰撞电安全性风险及仿真分析[J]. 汽车技术, 2015(3): 42-46 doi: 10.3969/j.issn.1000-3703.2015.03.010

    Jie G L, Zhu X C, Cao Y X, et al. Risks and simulation analysis of electric safety in electric vehicle crash[J]. Automobile Technology, 2015(3): 42-46 (in Chinese) doi: 10.3969/j.issn.1000-3703.2015.03.010
    [5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18384.1-2015电动汽车安全要求第1部分: 车载可充电储能系统(REESS)[S]. 北京: 中国标准出版社, 2015

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 18384.1-2015 Electrically propelled road vehicles-Safety specifications-Part 1: on-board rechargeable energy storage system(REESS)[S]. Beijing: Standards Press of China, 2015 (in Chinese)
    [6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 31498-2015电动汽车碰撞后安全要求[S]. 北京: 中国标准出版社, 2015

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 31498-2015 The safety requirement of electric vehicle post crash[S]. Beijing: Standards Press of China, 2015 (in Chinese)
    [7] 刘洋, 刘丹, 娄锋. 浅谈纯电动汽车整车级高压线束开发[J]. 新能源汽车, 2018, 44(11): 13-15, 18

    Liu Y, Liu D, Lou F. Development of whole-vehicle-grade high-voltage wire harness for pure electric vehicle[J]. Automobile Technology, 2018, 44(11): 13-15, 18 (in Chinese)
    [8] 郑昊天, 尹斌, 吴海龙, 等. 机械外载下新能源汽车高压线束失效风险试验研究[J]. 机床与液压, 2017, 45(5): 70-73 doi: 10.3969/j.issn.1001-3881.2017.05.017

    Zheng H T, Yin B, Wu H L, et al. Experimental study of failure risk of high-voltage harness of new energy vehicle under mechanical loading[J]. Machine Tool & Hydraulics, 2017, 45(5): 70-73 (in Chinese) doi: 10.3969/j.issn.1001-3881.2017.05.017
    [9] 尚晓江, 苏建宇, 王化锋. ANSYS/LS-DYNA动力分析方法与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2008

    Shang X J, Su J Y, Wang H F. ANSYS/LS-DYNA dynamic analysis method and engineering example[M]. 2nd ed. Beijing: China Water Resources and Hydropower Press, 2008 (in Chinese)
    [10] 尚晓江, 苏建宇, 王化锋. ANSYS/LS-DYNA动力分析方法与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2008

    Shang X J, Su J Y, Wang H F. ANSYS/LS-DYNA dynamic analysis method and engineering example[M]. 2nd ed. Beijing: China Water Resources and Hydropower Press, 2008 (in Chinese)
    [11] 陆中奎, 陈勇, 刘天鸣. 纯电动汽车碰撞高压安全系统设计及控制策略[J]. 重庆理工大学学报, 2019, 33(3): 86-90

    Lu Z K, Chen Y, Liu T M. System design and control strategy of collision high voltage safety for battery electric vehicle[J]. Journal of Chongqing University of Technology , 2019, 33(3): 86-90 (in Chinese)
    [12] 戴海峰, 张晓龙, 魏学哲, 等. 电动汽车高压电安全分析及防护设计[J]. 机电一体化, 2013, 19(1): 53-59 doi: 10.3969/j.issn.1007-080x.2013.01.011

    Dai H F, Zhang X L, Wei X Z, et al. High voltage safety analysis and protection design in EV development[J]. Mechatronics, 2013, 19(1): 53-59 (in Chinese) doi: 10.3969/j.issn.1007-080x.2013.01.011
    [13] 东风汽车公司. 一种电动汽车碰撞断电保护系统: 中国, CN104494544A[P]. 2015-04-08

    Dongfeng Motor Croporation. Collision power-off protection system of electromobile: CN, CN104494544A[P]. 2015-04-08 (in Chinese)
    [14] 陈彦雷. 一款纯电动汽车碰撞断电功能及碰撞后高压电安全测试[J]. 汽车电器, 2016(6): 18-20 doi: 10.3969/j.issn.1003-8639.2016.06.006

    Chen Y L. After-crash power off function and high voltage security test for an EV city bus[J]. Auto Electric Parts, 2016(6): 18-20 (in Chinese) doi: 10.3969/j.issn.1003-8639.2016.06.006
    [15] Lim J M, Kim G H. Crash protection of hybrid electrical vehicles for amending the KMVSS No. 91[J]. International Journal of Automotive Technology, 2010, 11(6): 825-830 doi: 10.1007/s12239-010-0098-x
    [16] Yin F, Mao H J, Hua L. A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters[J]. Materials & Design, 2011, 32(6): 3457-3464
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  73
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 刊出日期:  2020-06-05

目录

    /

    返回文章
    返回