留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动手术方舱洁净性能分析及优化设计

贲成斌 张超锋

贲成斌, 张超锋. 移动手术方舱洁净性能分析及优化设计[J]. 机械科学与技术, 2020, 39(5): 701-705. doi: 10.13433/j.cnki.1003-8728.20190205
引用本文: 贲成斌, 张超锋. 移动手术方舱洁净性能分析及优化设计[J]. 机械科学与技术, 2020, 39(5): 701-705. doi: 10.13433/j.cnki.1003-8728.20190205
Ben Chengbin, Zhang Chaofeng. Evaluating and Optimally Designing Cleanliness of a Mobile Operating Room[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 701-705. doi: 10.13433/j.cnki.1003-8728.20190205
Citation: Ben Chengbin, Zhang Chaofeng. Evaluating and Optimally Designing Cleanliness of a Mobile Operating Room[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 701-705. doi: 10.13433/j.cnki.1003-8728.20190205

移动手术方舱洁净性能分析及优化设计

doi: 10.13433/j.cnki.1003-8728.20190205
基金项目: 

江苏省六大人才高峰项目 JZ-2016-013

国家自然科学基金项目 51408263

详细信息
    作者简介:

    贲成斌(1995-), 硕士研究生, 研究方向为现代机械设计与制造, m17851307659_1@163.com

    通讯作者:

    张超锋, 副教授, 硕士生导师, zcf830703@163.com

  • 中图分类号: X513

Evaluating and Optimally Designing Cleanliness of a Mobile Operating Room

  • 摘要: 移动手术方舱是进行应急救援任务的重要组成部分,因此有必要对手术方舱在紧急情况下的洁净性能进行评估和改善。首先对工况下某型号手术方舱的气流组织和悬浮颗粒浓度展开实验与仿真工作,验证仿真流程的准确性与可靠性。基于已验证的计算流体动力学(CFD)气流组织计算结果,对送风口进行结构优化分析。结果表明,送风量一定的情况下,送风口的形状对手术区域的洁净性能有很大影响。通过送风方式的改进,手术区域的洁净性能得到了明显提升。这对于评价紧急情况下移动手术方舱的洁净性能以及降低病人术后感染率具有重要意义。
  • 图  1  手术方舱尺寸

    图  2  手术方舱内部实拍

    图  3  收缩状态下的手术方舱

    图  4  扩展状态下的手术方舱

    图  5  速度测量点示意图

    图  6  混合网格

    图  7  不同的送风方式

    图  8  手术区域速度矢量图

    图  9  速度对比

    图  10  不同送风方式下的颗粒浓度分布

    图  11  悬浮颗粒浓度监测位置

    图  12  3条监测线上颗粒浓度变化

    图  13  纵条和横条送风下浓度分布

  • [1] Howard J L, Hanssen A D. Principles of a clean operating room environment[J]. The Journal of Arthroplasty, 2007, 22(S7):6-11 http://cn.bing.com/academic/profile?id=dc37fe9566b5b1d23d4f4820f08659ee&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Charnley J. A clean-air operating enclosure[J]. The British Journal of Surgery, 1964, 51(3):202-205 doi: 10.1002/bjs.1800510309
    [3] Seo M S, Kim H R, Kim G J. Study of design parameters for semiconductor/FPD cleanroom focused on airborne contamination[J]. Key Engineering Materials, 2005, 277-279:424-430 doi: 10.4028/www.scientific.net/KEM.277-279.424
    [4] Liu J J, Wang H D, Wen W Y. Numerical simulation on a horizontal airflow for airborne particles control in hospital operating room[J]. Building and Environment, 2009, 44(11):2284-2289 doi: 10.1016/j.buildenv.2009.03.019
    [5] Zhang R, Tu G B, Ling J H. Study on biological contaminant control strategies under different ventilation models in hospital operating room[J]. Building and Environment, 2008, 43(5):793-803 doi: 10.1016/j.buildenv.2007.01.018
    [6] Whyte W, Whyte W M, Eaton T, et al. Calculation of air supply rates for nounidirectional airflow cleanrooms[J]. European Journal of Parenteral and Pharmaceutical Sciences, 2014, 19(4):121-129
    [7] Gormley T, Markel T A, Jones H, et al. Cost-benefit analysis of different air change rates in an operating room environment[J]. American Journal of Infection Control, 2017, 45(12):1318-1323 doi: 10.1016/j.ajic.2017.07.024
    [8] Gao G Y, Storas M C A, Aganovic A, et al. Do surgeons and surgical facilities disturb the clean air distribution close to a surgical patient in an orthopedic operating room with laminar airflow?[J]. American Journal of Infection Control, 2018, 46(10):11158-1122 http://cn.bing.com/academic/profile?id=3e6c465d4a4670f89353f00b7fa624e8&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Noh K C, Kim H S, Oh M D. Study on contamination control in a minienvironment inside clean room for yield enhancement based on particle concentration measurement and airflow CFD simulation[J]. Building and Environment, 2010, 45(4):825-831 doi: 10.1016/j.buildenv.2009.09.001
    [10] Dehghan M H, Abdolzadeh M. Comparison study on air flow and particle dispersion in a typical room with floor, skirt boarding, and radiator heating systems[J]. Building and Environment, 2018, 133:161-177 doi: 10.1016/j.buildenv.2018.02.018
    [11] Sadrizadeh S, Holmberg S. Effect of a portable ultra-clean exponential airflow unit on the particle distribution in an operating room[J]. Particuology, 2015, 18:170-178 doi: 10.1016/j.partic.2014.06.002
    [12] Zhou B, Ding L L, Li F, et al. Influence of opening and closing process of sliding door on interface airflow characteristic in operating room[J]. Building and Environment, 2018, 144:459-473 doi: 10.1016/j.buildenv.2018.08.050
    [13] Nielsen P V. Fifty years of CFD for room air distribution[J]. Building and Environment, 2015, 91:78-90 doi: 10.1016/j.buildenv.2015.02.035
    [14] Wang J L, Chow T T. Influence of human movement on the transport of airborne infectious particles in hospital[J]. Journal of Building Performance Simulation, 2015, 8(4):205-215 doi: 10.1080/19401493.2014.905636
    [15] Rouaud O, Havet M. Computation of the airflow in a pilot scale clean room using K-ε turbulence models[J]. International Journal of Refrigeration, 2002, 25(3):351-361 doi: 10.1016/S0140-7007(01)00014-7
    [16] 许钟麟空气洁净技术原理[M]4版.北京: 科学出版社2014: 429-432

    Xu Z L. Principles of clean air technology[M]. 4th ed. Beijing: Science Press 2014: 429-432(in Chinese)
    [17] 樊越胜, 谢伟, 张鑫, 等.住宅建筑室内PM25污染特征与控制[J].环境工程2018, 36(7):93-97, 45

    Fan Y S, Xie W, Zhang X, et al. Pollution characteristics and control of indoor PM2.5 in residential buildings[J]. Environmental Engineering, 2018, 36(7):93-97, 45(in Chinese)
  • 加载中
图(13)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  104
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 刊出日期:  2020-05-05

目录

    /

    返回文章
    返回