留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AZ31B镁合金差温成形温度优化

唐维 雷静希 丁超 张飞

唐维, 雷静希, 丁超, 张飞. AZ31B镁合金差温成形温度优化[J]. 机械科学与技术, 2020, 39(3): 456-460. doi: 10.13433/j.cnki.1003-8728.20190138
引用本文: 唐维, 雷静希, 丁超, 张飞. AZ31B镁合金差温成形温度优化[J]. 机械科学与技术, 2020, 39(3): 456-460. doi: 10.13433/j.cnki.1003-8728.20190138
Tang Wei, Lei Jingxi, Ding Chao, Zhang Fei. Optimization of Satmping Temperature in Nonisothermal Stamping of AZ31B Magnesium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 456-460. doi: 10.13433/j.cnki.1003-8728.20190138
Citation: Tang Wei, Lei Jingxi, Ding Chao, Zhang Fei. Optimization of Satmping Temperature in Nonisothermal Stamping of AZ31B Magnesium Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 456-460. doi: 10.13433/j.cnki.1003-8728.20190138

AZ31B镁合金差温成形温度优化

doi: 10.13433/j.cnki.1003-8728.20190138
详细信息
    作者简介:

    唐维(1990-), 助教, 硕士, 研究方向为板料成形和参数优化, tangwei.mac@outlook.com

  • 中图分类号: TG386

Optimization of Satmping Temperature in Nonisothermal Stamping of AZ31B Magnesium Alloy

  • 摘要: 为了获得更利于镁合金差温成形的模具温度与板料温度,采用量子遗传算法(QGA)和支持向量回归机(SVR)相结合的寻优方法用于温度优化。基于镁合金差温成形有限元模型,建立模具各部件、板料的温度与成形件目标区域厚度之间的SVR模型,通过量子遗传算法对建立的近似模型寻优以获得最适合镁合金AZ31B差温成形的温度参数。以NUMISHEET2011中的十字杯形件为研究对象,利用优化后的温度进行差温成形仿真并与试验数据值对比。结果表明,优化后的温度能够使得板料厚度分布更均匀。
  • 图  1  SVR结构

    图  2  十字杯形件

    图  3  有限元模型示意图

    图  4  温度分布云图

    图  5  沿AB温度分布对比

    图  6  圆角位置示意图

    图  7  优化后计算获得温度场

    图  8  AB截面厚度分布对比

    表  1  AZ31B材料参数

    杨氏模量 45 GPa
    泊松比 0.35
    密度 1 770 kg/m3
    比热 1 000 kg/(J·℃)
    热传导率 96 W/(m·℃)
    接触换热系数 4 500 W/(m·℃)
    下载: 导出CSV

    表  2  拉丁超立方抽样结果

    序号 各部件温度/℃
    T1 T2 T3 T4
    1 113.42 92.89 251.98 216.45
    2 89.74 102.37 275.65 267.78
    3 97.63 97.63 228.30 255.93
    4 99.21 100.79 232.23 240.13
    5 103.95 86.58 255.93 232.23
    6 115.00 113.42 220.40 287.50
    7 102.37 91.32 259.88 212.50
    8 105.53 108.68 283.55 251.98
    9 111.84 115.00 236.18 244.08
    10 86.58 96.05 216.45 220.40
    11 88.16 110.26 224.35 259.88
    12 110.26 88.16 271.70 275.65
    13 96.05 111.84 279.60 248.03
    14 91.32 105.53 263.83 228.30
    15 107.11 89.74 248.03 279.60
    16 108.68 85.00 212.50 224.35
    17 94.47 99.21 287.50 283.55
    18 85.00 107.11 240.13 271.70
    19 92.89 94.47 244.08 236.18
    20 100.79 103.95 267.78 263.83
    下载: 导出CSV

    表  3  温度优化前后板料厚度对比

    名称 优化前 优化后
    圆角1厚度/mm 0.465 0.462
    圆角2厚度/mm 0.402 0.471
    圆角3厚度/mm 0.465 0.462
    均匀性误差/% 16.8 2.4
    下载: 导出CSV
  • [1] 李宜达, 梁敏洁, 廖海洪, 等.高性能镁合金及其在汽车行业应用的研究进展[J].热加工工艺, 2013, 42(10):12-16, 19 http://d.old.wanfangdata.com.cn/Periodical/rjggy201310003

    Li Y D, Liang M J, Liao H H, et al. Research progress of advanced magnesium alloys and its application in auto industry[J]. Hot Working Technology, 2013, 42(10):12-16, 19(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/rjggy201310003
    [2] 罗仁平, 黄雷, 戴儇, 等.镁合金AZ31B板材温成形流变规律及本构模型[J].塑性工程学报, 2015, 22(1):82-87 doi: 10.3969/j.issn.1007-2012.2015.01.016

    Luo R P, Huang L, Dai X, et al. Flow law and constitutive model of AZ31B magnesium alloy sheet in warm forming[J]. Journal of Plasticity Engineering, 2015, 22(1):82-87(in Chinese) doi: 10.3969/j.issn.1007-2012.2015.01.016
    [3] 文冬.镁合金冲压成形理论与热力耦合模拟研究[D].大连: 大连理工大学, 2016

    Wen D. Theoretical investigation and thermo-mechanical coupling simulation of magnesium alloys during stamping forming[D]. Dalian: Dalian University of Technology, 2016(in Chinese)
    [4] Doege E, Dröder K. Sheet metal forming of magnesium wrought alloys-formability and process technology[J]. Journal of Materials Processing Technology, 2001, 115(1):14-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2225cc1e762f3daa23a2fe97afe59bf3
    [5] Chen F K, Huang T B. Formability of stamping magnesium-alloy AZ31 sheets[J]. Journal of Materials Processing Technology, 2003, 142(3):643-647 doi: 10.1016/S0924-0136(03)00684-8
    [6] Chen F K, Huang T B, Chang C K. Deep drawing of square cups with magnesium alloy AZ31 sheets[J]. International Journal of Machine Tools and Manufacture, 2003, 43(15):1553-1559 doi: 10.1016/S0890-6955(03)00198-6
    [7] 尹德良, 张凯锋, 吴德忠.AZ31镁合金非等温拉深性能的研究[J].材料科学与工艺, 2004, 12(1):87-90, 94 doi: 10.3969/j.issn.1005-0299.2004.01.023

    Yin D L, Zhang K F, Wu D Z. Nonisothermal deep drawability of AZ31 magnesium alloy[J]. Materials Science and Technology, 2004, 12(1):87-90, 94(in Chinese) doi: 10.3969/j.issn.1005-0299.2004.01.023
    [8] 杨柳, 官英平, 段永川, 等.AZ31B镁合金方盒形件的差温拉深成形[J].塑性工程学报, 2016, 23(1):27-31, 39 http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201601006

    Yang L, Guan Y P, Duan Y C, et al. Research on differential temperature drawing forming for AZ31B magnesium alloy square-box parts[J]. Journal of Plasticity Engineering, 2016, 23(1):27-31, 39(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201601006
    [9] 谢延敏, 唐维, 黄仁勇, 等.基于混合近似模型的镁合金差温成形压边圈结构形状优化[J].塑性工程学报, 2018, 25(2):22-29 http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201802004

    Xie Y M, Tang W, Huang R Y, et al. Shape optimization of blank holder structure in nonisothermal stamping of Magnesium alloy based on ensemble Surrogate[J]. Journal of Plasticity Engineering, 2018, 25(2):22-29(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/sxgcxb201802004
    [10] 曹志福, 陈炜, 王祥.镁合金十字杯形件温拉深成形工艺研究[J].热加工工艺, 2013, 42(1):121-123 http://d.old.wanfangdata.com.cn/Periodical/rjggy201301039

    Cao Z F, Chen W, Wang X. Study on warm deep drawing process of magnesium alloy cross-shaped cup[J]. Hot Working Technology, 2013, 42(1):121-123(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/rjggy201301039
    [11] 乔良, 宋小欣, 谢延敏, 等.基于PSO-RBF代理模型的板料成形本构参数反求优化研究[J].中国机械工程, 2014, 25(19):2680-2685 doi: 10.3969/j.issn.1004-132X.2014.19.023

    Qiao L, Song X X, Xie Y M, et al. Reverse and optimization of sheet forming parameters based on PSO-RBF surrogate model[J]. China Mechanical Engineering, 2014, 25(19):2680-2685(in Chinese) doi: 10.3969/j.issn.1004-132X.2014.19.023
    [12] 王新宝, 谢延敏, 乔良, 等.基于鱼群BP神经网络的板料成形分块压边力优化[J].中国机械工程, 2014, 25(18):2527-2531 doi: 10.3969/j.issn.1004-132X.2014.18.022

    Wang X B, Xie Y M, Qiao L, et al. Optimization of several segmental binder force in sheet forming based on BP neural network and fish swarm algorithm[J]. China Mechanical Engineering, 2014, 25(18):2527-2531(in Chinese) doi: 10.3969/j.issn.1004-132X.2014.18.022
    [13] Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla: IEEE, 2000: 1354-1360
    [14] 唐维, 谢延敏, 黄仁勇, 等.基于自适应SVR-ELM混合近似模型的镁合金差温成形本构参数反求[J].工程设计学报, 2017, 24(5):536-544 doi: 10.3785/j.issn.1006-754X.2017.05.008

    Tang W, Xie Y M, Huang R Y, et al. Constitutive parameter inverse for nonisothermal stamping of magnesium alloy based on adaptive SVR-ELM mixture surrogate model[J]. Chinese Journal of Engineering Design, 2017, 24(5):536-544(in Chinese) doi: 10.3785/j.issn.1006-754X.2017.05.008
    [15] 张勇, 李恒灿, 梁明亮.基于PSO-BP神经网络的汽车用铸造AZ91镁合金晶粒尺寸的预测[J].热加工工艺, 2019, 48(3):105-107, 111 http://www.cnki.com.cn/Article/CJFDTotal-SJGY201903025.htm

    Zhang Y, Li H C, Liang M L. Prediction of grain size of cast AZ91 magnesium alloy for automobile based on PSO-BP neural network[J]. Hot Working Technology, 2019, 48(3):105-107, 111(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-SJGY201903025.htm
    [16] 毛耀本, 孔晓华, 李宪宾, 等.方盒形件混合分块压边拉深工艺研究[J].精密成形工程, 2018, 10(6):57-64 doi: 10.3969/j.issn.1674-6457.2018.06.010

    Mao Y B, Kong X H, Li X B, et al. Deep drawing of square cup with hybrid segment-blank-holder technique[J]. Journal of Netshape Forming Engineering, 2018, 10(6):57-64(in Chinese) doi: 10.3969/j.issn.1674-6457.2018.06.010
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  105
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 刊出日期:  2020-03-05

目录

    /

    返回文章
    返回