留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种磨削表面微观形貌应力集中系数的计算方法

孙甲尧 郭紫贵 赵学清 李秀兰 罗静

孙甲尧, 郭紫贵, 赵学清, 李秀兰, 罗静. 一种磨削表面微观形貌应力集中系数的计算方法[J]. 机械科学与技术, 2020, 39(3): 379-384. doi: 10.13433/j.cnki.1003-8728.20190137
引用本文: 孙甲尧, 郭紫贵, 赵学清, 李秀兰, 罗静. 一种磨削表面微观形貌应力集中系数的计算方法[J]. 机械科学与技术, 2020, 39(3): 379-384. doi: 10.13433/j.cnki.1003-8728.20190137
Sun Jiayao, Guo Zigui, Zhao Xueqing, Li Xiulan, Luo Jing. Calculation Method of Stress Concentration Factor of Surface Micro Topography in Grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 379-384. doi: 10.13433/j.cnki.1003-8728.20190137
Citation: Sun Jiayao, Guo Zigui, Zhao Xueqing, Li Xiulan, Luo Jing. Calculation Method of Stress Concentration Factor of Surface Micro Topography in Grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 379-384. doi: 10.13433/j.cnki.1003-8728.20190137

一种磨削表面微观形貌应力集中系数的计算方法

doi: 10.13433/j.cnki.1003-8728.20190137
基金项目: 

湖南省教育厅科学研究项目 11C1289

湖南省教育厅科学研究项目 18C1779

湖南省自然科学基金项目 2019JJ70035

详细信息
    作者简介:

    孙甲尧(1981-), 副教授, 研究方向为齿轮加工工艺, 4205220@qq.com

    通讯作者:

    郭紫贵, 教授, 740469136@qq.com

  • 中图分类号: V252.2;O343.4

Calculation Method of Stress Concentration Factor of Surface Micro Topography in Grinding

  • 摘要: 针对一种磨削表面微观形貌的应力集中问题提出了一种应力集中系数的精确计算方法。通过实验观察磨削工件表面微观形貌在进给方向具有沟壑状形貌特征,采用缺口模型分析计算磨削表面微观形貌应力集中系数;提出基于二维表面轮廓数据的缺口表征参数计算方法,建立无限大平面缺口模型并采用迭代法对模型进行修正,并用有限元方法进行对比验证。针对磨削表面微观形貌的应力集中系数与缺口模型特征参数-缺口的宽度、深度和谷底半径的定量关系,提供了对应的经验公式。研究工作为磨削表面微观形貌与应力集中系数关联规律研究提供一种定量计算方法,对分析磨削工件表面微观形貌的疲劳性能具有基础作用。
  • 图  1  磨削表面激光共聚焦显微镜实测图

    图  2  磨削表面白光干涉仪实测图

    图  3  磨削表面有限元几何缺口模型示意图

    图  4  平均应力模型

    图  5  应力集中系数计算流程图

    图  6  缺口附近应力分布状态图

    图  7  缺口网格划分

    图  8  平面长度对应力集中系数的影响

    图  9  平面宽度对应力集中系数的影响

    图  10  ρ固定, sd对应力集中系数的影响

    图  11  s固定, ρd对应力集中系数的影响

    图  12  拟合情况图

    表  1  磨削表面微观形貌参数 μm

    样本 Ra Ry RZ s d ρ
    1 0.276 1.449 1.084 8.432 0.541 2.248
    2 0.424 2.479 1.687 13.985 0.845 3.015
    3 0.568 3.776 3.129 11.210 1.256 2.842
    4 0.662 5.451 4.228 10.171 1.407 2.516
    下载: 导出CSV

    表  2  不同参数下的的应力集中系数

    d Kt
    ρ=2 s=12
    s=8 s=12 s=16 ρ=2 ρ=4 ρ=6
    0.5 1.643 1.508 1.408 1.508 1.430 1.390
    1 2.144 1.962 1.797 1.962 1.779 1.684
    1.5 2.573 2.327 2.169 2.327 2.076 1.919
    2 2.877 2.688 2.479 2.688 2.326 2.079
    2.5 3.163 1 3.011 2.788 3.011 2.504 2.242
    注:d, ρ, s的单位均为μm。
    下载: 导出CSV
  • [1] Bayoumi M R, Abdellatif A K. Effect of surface finish on fatigue strength[J]. Engineering Fracture Mechanics, 1995, 51(5):861-870 doi: 10.1016/0013-7944(94)00297-U
    [2] 刘白, 汪大鹏, 廖珍.机械加工对弯曲疲劳强度的影响[J].机械工程材料, 2002, 26(1):22-24 doi: 10.3969/j.issn.1000-3738.2002.01.006

    Liu B, Wang D P, Liao Z. Effects of machining on fatigue strength under reversed bending stress[J]. Materials for Mechanical Engineering, 2002, 26(1): 22-24(in Chinese) doi: 10.3969/j.issn.1000-3738.2002.01.006
    [3] Novovic D, Dewes R C, Aspinwall D K, et al. The effect of machined topography and integrity on fatigue life[J]. International Journal of Machine Tools and Manufacture, 2004, 44(2-3):125-134 doi: 10.1016/j.ijmachtools.2003.10.018
    [4] The Technical Staff of the Machinability Data Center. Machining data handbook[M]. Cincinnati, Ohio: Machinability Data Center, 1980:9-18
    [5] Taylor D, Clancy O M. The fatigue performance of machined surfaces[J]. Fatigue & Fracture of Engineering Materials & Structures, 1991, 14(2-3):329-336 http://cn.bing.com/academic/profile?id=606ef3b39943f4c50b19387b5d17756d&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Gao Y X, Yi J Z, Lee P D, et al. A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys[J]. Acta Materialia, 2004, 52(19):5435-5449 doi: 10.1016/j.actamat.2004.07.035
    [7] Arola D, Ramulu M. An examination of the effects from surface texture on the strength of fiber reinforced plastics[J]. Journal of Composite Materials, 1999, 33(2):102-123 doi: 10.1177/002199839903300201
    [8] Fonte M, Romeiro F, Freitas M. Environment effects and surface roughness on fatigue crack growth at negative R-ratios[J]. International Journal of Fatigue, 2007, 29(9-11):1971-1977 doi: 10.1016/j.ijfatigue.2007.02.027
    [9] Neuber H. Theory of notch stresses[M]. Berlin, Germany: Springer Verlag, 1958:204-210
    [10] Andrews S, Sehitoglu H. A computer model for fatigue crack growth from rough surfaces[J]. International Journal of Fatigue, 2000, 22(7):619-630 doi: 10.1016/S0142-1123(00)00018-9
    [11] As S K, Skallerud B, Tveiten B W. Surface roughness characterization for fatigue life predictions using finite element analysis[J]. International Journal of Fatigue, 2008, 30(12):2200-2209 doi: 10.1016/j.ijfatigue.2008.05.020
    [12] 孟波, 郭万林.表面微观形貌对疲劳强度影响的定量分析[J].机械工程材料, 2006, 30(5):26-29 doi: 10.3969/j.issn.1000-3738.2006.05.008

    Meng B, Gou W L. Quantitative analysis of the effect of surface topography on fatigue strength[J]. Materials for Mechanical Engineering, 2006, 30(5):26-29(in Chinese) doi: 10.3969/j.issn.1000-3738.2006.05.008
    [13] 章刚, 刘军, 刘永寿, 等.表面粗糙度对表面应力集中系数和疲劳寿命影响分析[J].机械强度, 2010, 32(1):110-115 http://d.old.wanfangdata.com.cn/Periodical/jxqd201001022

    Zhang G, Liu J, Liu Y S, et al. Effect of roughness on surface stress concentration factor and fatigue life[J]. Journal of Mechanical Strength, 2010, 32(1):110-115(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxqd201001022
    [14] 廖智奇, 吴运新, 袁海洋.表面粗糙度对三维应力集中系数及疲劳寿命的影响[J].中国机械工程, 2015, 26(2):147-151 doi: 10.3969/j.issn.1004-132X.2015.02.002

    Liao Z Q, Wu Y X, Yuan H Y. Influences of surface roughness on three dimensional stress concentration factor and fatigue life[J]. China Mechanical Engineering, 2015, 26(2):147-151(in Chinese) doi: 10.3969/j.issn.1004-132X.2015.02.002
    [15] 杨国庆, 熊美华, 洪军, 等.3D粗糙表面的数字化表征与接触特性分析[J].西安交通大学学报, 2012, 46(11):58-63 http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201211012

    Yang G Q, Xiong M H, Hong J, et al. Numerical characterization and contact performances for 3D rough surfaces[J]. Journal of Xi'an Jiaotong University, 2012, 46(11):58-63(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201211012
    [16] He Y F, Tang J Y, Zhou W, et al. Research on the obtainment of topography parameters by rough surface simulation with fast Fourier transform[J]. Journal of Tribology, 2015, 137(3):031401 doi: 10.1115/1.4029843
    [17] Liao D R, Tang J Y, Zhou W. Based on the NCGM method of the Gaussian 3-d rough surface numerical simulation[C]//Proceedings of 2013 Fifth International Conference on Measuring Technology and Mechatronics Automation. Hong Kong, China: IEEE, 2013: 323-326
    [18] Zhou W, Tang J Y, Huang Z H. A new method for rough surface profile simulation based on peak-valley mapping[J]. Tribology Transactions, 2015, 58(6):971-979 doi: 10.1080/10402004.2015.1019599
    [19] Zhou W, Tang J Y, He Y F, et al. Associated rules between microstructure characterization parameters and contact characteristic parameters of two cylinders[J]. Journal of Central South University, 2015, 22(11):4228-4234 doi: 10.1007/s11771-015-2971-2
    [20] 陈容, 黄宁.一种理论应力集中系数的有效算法研究[J].工程设计学报, 2010, 17(3):215-218, 240 doi: 10.3785/j.issn.1006-754X.2010.03.011

    Chen R, Huang N. Research on an effective algorithm for theoretical stress concentration coefficient[J]. Journal of Engineering Design, 2010, 17(3):215-218, 240(in Chinese) doi: 10.3785/j.issn.1006-754X.2010.03.011
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  187
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 刊出日期:  2020-03-05

目录

    /

    返回文章
    返回