留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用磁流变阻尼器的三自由度半主动座椅悬架系统变论域模糊控制

胡国良 林豪 李刚

胡国良, 林豪, 李刚. 采用磁流变阻尼器的三自由度半主动座椅悬架系统变论域模糊控制[J]. 机械科学与技术, 2020, 39(3): 425-432. doi: 10.13433/j.cnki.1003-8728.20190127
引用本文: 胡国良, 林豪, 李刚. 采用磁流变阻尼器的三自由度半主动座椅悬架系统变论域模糊控制[J]. 机械科学与技术, 2020, 39(3): 425-432. doi: 10.13433/j.cnki.1003-8728.20190127
Hu Guoliang, Lin Hao, Li Gang. Variable Universe Fuzzy Control of 3-DOF Semi-active Seat Suspension System using Magnetorheological Damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 425-432. doi: 10.13433/j.cnki.1003-8728.20190127
Citation: Hu Guoliang, Lin Hao, Li Gang. Variable Universe Fuzzy Control of 3-DOF Semi-active Seat Suspension System using Magnetorheological Damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(3): 425-432. doi: 10.13433/j.cnki.1003-8728.20190127

采用磁流变阻尼器的三自由度半主动座椅悬架系统变论域模糊控制

doi: 10.13433/j.cnki.1003-8728.20190127
基金项目: 

江西省主要学科学术和技术带头人资助计划项目 20162BCB22019

江西省创新驱动5511科技创新人才项目 20165BCB18011

国家自然科学基金项目 51765016

详细信息
    作者简介:

    胡国良(1973-), 教授, 博士, 研究方向为磁流变智能器件及结构, glhu2006@163.com

  • 中图分类号: TG156

Variable Universe Fuzzy Control of 3-DOF Semi-active Seat Suspension System using Magnetorheological Damper

  • 摘要: 对座椅悬架系统用磁流变阻尼器进行阻尼特性试验,利用最小二乘法对双曲正切模型进行参数辨识。结合座椅悬架系统的动力学特性,建立三自由度半主动座椅悬架系统模型。针对采用传统模糊控制精度不高的问题,提出一种基于模糊推理的变论域模糊控制策略。以脉冲路面激励和随机路面激励为输入,分别对被动悬架、传统模糊控制半主动悬架系统及变论域模糊控制半主动悬架系统进行动力学仿真分析。仿真结果表明:采用最小二乘法辨识出的参数模型可满足后续计算。所设计的变论域模糊控制策略减振效果明显优于传统模糊控制,能有效隔离路面冲击干扰,使得座椅悬架系统的综合性能得到明显改善。
  • 图  1  磁流变阻尼器实物图

    图  2  磁流变阻尼器阻尼特性试验系统

    图  3  磁流变阻尼器阻尼特性试验曲线

    图  4  双曲正切模型示意图

    图  5  各参数随电流的变化趋势

    图  6  仿真数据与试验数据对比分析

    图  7  三自由度半主动座椅悬架系统模型

    图  8  半主动座椅悬架变论域模糊控制框图

    图  9  脉冲路面激励下的座椅悬架动态响应

    图  10  随机路面激励下的座椅悬架动态响应

    表  1  双曲正切模型参数辨识结果

    电流/A α β δ c k f0
    0 67.89 0.310 7 1.637 2 0.58 1.67 -6.30
    0.25 249.2 0.310 7 1.637 2 1.49 1.69 -6.71
    0.5 430.6 0.310 7 1.637 2 2.39 1.71 -7.12
    0.75 611.9 0.310 7 1.637 2 3.31 1.73 -7.53
    1 793.4 0.310 7 1.637 2 4.21 1.75 -7.93
    1.25 974.8 0.310 7 1.637 2 5.12 1.77 -8.34
    下载: 导出CSV

    表  2  三自由度半主动座椅悬架系统相关参数

    参数 数值
    ms 80 kg
    mv 400 kg
    mt 40 kg
    ks 8 000 N/m
    kv 15 800 N/m
    kt 158 000 N/m
    cs 250 N·s/m
    cv 1 500 N·s/m
    下载: 导出CSV

    表  3  控制电流I模糊规则表

    I EC
    NB NM NS ZE PS PM PB
    E NB L ML M S S SL ML
    NM SL S SM ZE SM M SL
    NS M SM ZE SM SM S M
    ZE S SM SM ZE ZE SM S
    PS SM SM ZE SM ZE S M
    PM SL M S S M SL ML
    PB L ML SL M M SL L
    下载: 导出CSV

    表  4  伸缩因子α1(x1)模糊规则表

    α1(x1) EC
    NB NM NS ZE PS PM PB
    E NB L L M S M L L
    NM L M S S S M L
    NS M M S ZE ZE M M
    ZE M S ZE ZE ZE S M
    PS M M S ZE S M M
    PM L M S S S M L
    PB L L M S M L L
    下载: 导出CSV

    表  5  伸缩因子α2(x2)模糊规则表

    α2(x2) EC
    NB NM NS ZE PS PM PB
    E NB L L M M M L L
    NM L L S S S L L
    NS M M S ZE ZE M M
    ZE M S ZE ZE ZE S M
    PS M M S ZE S M M
    PM L B S S S L L
    PB L B M M M L L
    下载: 导出CSV

    表  6  伸缩因子β(y)模糊规则表

    β(y) EC
    NB NM NS ZE PS PM PB
    E NB L M S ZE S M L
    NM L L M S M L L
    NS L M S S S M L
    ZE M M S ZE ZE M M
    PS M S ZE ZE ZE S M
    PM M M S ZE S M M
    PB L M S S S M L
    下载: 导出CSV

    表  7  脉冲路面座椅悬架性能评价指标响应峰值

    控制类型 座椅加速度/(m·s-2) 悬架动行程/mm
    被动座椅悬架 5.194 0 60.8
    传统模糊控制 4.299 6 36.9
    变论域模糊控制 3.466 7 29.5
    下载: 导出CSV

    表  8  随机路面座椅悬架性能评价指标均方根值

    控制类型 座椅加速度/(m·s-2) 悬架动行程/mm
    被动座椅悬架 0.424 3 3.5
    传统模糊控制 0.360 5 2.3
    变论域模糊控制 0.298 7 1.9
    下载: 导出CSV
  • [1] 宁东红, 贾志娟, 董明明.车辆座椅悬架减振系统研究进展[J].中国计量大学学报, 2018, 29(2):113-120 doi: 10.3969/j.issn.2096-2835.2018.02.001

    Ning D H, Jia Z J, Dong M M, et al. Research progress about the vibration control system of vehicle seat suspension[J]. Journal of China Jiliang University, 2018, 29(2):113-120(in Chinese) doi: 10.3969/j.issn.2096-2835.2018.02.001
    [2] Guclu R. Fuzzy logic control of seat vibrations of a non-linear full vehicle model[J]. Nonlinear Dynamics, 2005, 40(1):21-34 doi: 10.1007/s11071-005-3815-7
    [3] Mcmanus S J, Clair K A S, Boileau P E', et al. Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper[J]. Journal of Sound and Vibration, 2002, 253(1):313-327 doi: 10.1006/jsvi.2001.4262
    [4] 郭迎庆, 徐赵东, 贾树岷, 等.磁流变智能结构的微粒群优化控制[J].振动与冲击, 2011, 30(9):59-63 doi: 10.3969/j.issn.1000-3835.2011.09.013

    Guo Y Q, Xu Z D, Jia S M, et al. PSO control used in magnetorheological intelligent structures[J]. Journal of Vibration and Shock, 2011, 30(9):59-63(in Chinese) doi: 10.3969/j.issn.1000-3835.2011.09.013
    [5] Oh H U. Experimental demonstration of an improved magneto-rheological fluid damper for suppression of vibration of a space flexible structure[J]. Smart Materials and Structures, 2004, 13(5):1238-1244 doi: 10.1088/0964-1726/13/5/028
    [6] Li W H, Liu B, Kosasih P B, et al. A 2-DOF MR actuator joystick for virtual reality applications[J]. Sensors and Actuators A: Physical, 2007, 137(2):308-320 doi: 10.1016/j.sna.2007.03.015
    [7] 孟小杰, 于海龙, 笍筱亭, 等.磁流变阻尼器建模及在座椅减振中应用[J].噪声与振动控制, 2017, 37(1):58-62 http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201701013

    Meng X J, Yu H L, Rui X T, et al. MRD modeling and its application in seat cushioning[J]. Noise and Vibration Control, 2017, 37(1):58-62(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201701013
    [8] 李三妞.基于磁流变液拖拉机半主动座椅悬架减振系统研究[D].河南洛阳: 河南科技大学, 2015

    Li S N. Research of tractor semi-active seat suspension system based on magneto-rheological damper[D]. Henan Luoyang: Henan University of Science and Technology, 2015(in Chinese)
    [9] 李洪兴.变论域自适应模糊控制器[J].中国科学, 1999, 29(1):32-42 http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce199901006

    Li H X. Adaptive fuzzy controllers based on variable universe[J]. Science in China Series E: Technological Sciences, 1999, 42(1):10(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce199901006
    [10] Kwok N, Ha Q, Nguyen T, et al. A novel hysteretic model for magnetorheological fluid damper and parameter identification using particle swarm optimization[J]. Sensors & Actuators A Physical, 2006, 132(2):441-451 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=278246b4bdd939c74bb37adbfcc3577d
    [11] 陈云微.基于滑模变结构控制的车辆半主动座椅悬架研究[D].哈尔滨: 东北林业大学, 2012

    Chen Y W. Research on vehicle semi-active seat suspension based on sliding mode variable structure control[D]. Harbin: Northeast Forestry University, 2012(in Chinese)
    [12] 禚帅帅.D级轿车磁流变半主动悬架状态灰预测模糊控制研究[D].长春: 吉林大学, 2015

    Zhuo S S. Magnetorheological semi-active suspension control strategy with grey prediction and fuzzy for D class vehicle[D]. Changchun: Jilin University, 2015(in Chinese)
    [13] 郑帅.MR-SAS与EPS变论域模糊PID集成控制[D].安徽淮南: 安徽理工大学, 2015

    Zheng S. MR-SAS and EPS variable universe fuzzy PID integrated control[D]. Anhui Huainan: Anhui University of Science and Technology, 2015(in Chinese)
    [14] Nguyen S D, Nguyen Q H, Choi S B. A hybrid clustering based fuzzy structure for vibration control-Part 2: an application to semi-active vehicle seat-suspension system[J]. Mechanical Systems and Signal Processing, 2015, 56-57:288-301 doi: 10.1016/j.ymssp.2014.10.019
    [15] Rath J J, Veluvolu K C, Defoort M. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems[J]. The Scientific World Journal, 2014, 2014:203416 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003736753
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  286
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-14
  • 刊出日期:  2020-03-05

目录

    /

    返回文章
    返回