留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低孔隙率碳纤维复合材料的时频模型和局部孔隙检测

杨勇 黄蔚 曾祥

杨勇, 黄蔚, 曾祥. 低孔隙率碳纤维复合材料的时频模型和局部孔隙检测[J]. 机械科学与技术, 2019, 38(11): 1797-1804. doi: 10.13433/j.cnki.1003-8728.20190028
引用本文: 杨勇, 黄蔚, 曾祥. 低孔隙率碳纤维复合材料的时频模型和局部孔隙检测[J]. 机械科学与技术, 2019, 38(11): 1797-1804. doi: 10.13433/j.cnki.1003-8728.20190028
Yang Yong, Huang Wei, Zeng Xiang. Time-frequency Modeling and Localized Pores Detection Method of Low-porosity Composites[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1797-1804. doi: 10.13433/j.cnki.1003-8728.20190028
Citation: Yang Yong, Huang Wei, Zeng Xiang. Time-frequency Modeling and Localized Pores Detection Method of Low-porosity Composites[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1797-1804. doi: 10.13433/j.cnki.1003-8728.20190028

低孔隙率碳纤维复合材料的时频模型和局部孔隙检测

doi: 10.13433/j.cnki.1003-8728.20190028
详细信息
    作者简介:

    杨勇(1987-), 工程师, 研究方向为航天器结构设计, 272365918@qq.com

    通讯作者:

    曾祥, 工程师, zzjjuu0104@163.com

  • 中图分类号: TB553

Time-frequency Modeling and Localized Pores Detection Method of Low-porosity Composites

  • 摘要: 本文研究了孔隙率不高于1%的低孔隙率碳纤维复合材料(CFRP)的时频模型和局部孔隙检测方法。将现有的超声波在CFRP内传播的频域模型扩展到时频模型,通过仿真验证了共振结构噪声的存在,研究了共振结构噪声和局部孔隙形成的缺陷回波的频率差异。在此基础上,提出应用变分模态分解分离高频随机噪声和共振结构噪声,提取包含缺陷回波的低频成分进行局部孔隙检测。提出能量函数和瞬时增益的概念,以克服由于声波能量随传播距离降低而造成的近表面信号对远表面信号的遮蔽效果。对低孔隙率CFRP试块的实验表明,基于变分模态分解和瞬时增益的方法能够有效抑制噪声干扰、克服遮蔽效应,实现局部孔隙的准确检测。
  • 图  1  多层介质的反射

    图  2  探头发射信号和频谱

    图  3  仿真结果

    图  4  实验设备

    图  5  接收信号和VMD所得成分:波形、频谱、包络谱

    图  6  EMD所得成分

    图  7  试块S1的能量函数和瞬时增益

    图  8  试块S2的能量函数和瞬时增益

    图  9  区域A、B、C的显微照片

    表  1  中心频率分布

    α ω/(2π)/MHz
    ω1/(2π) ω2/(2π) ω3/(2π)
    1 500 31.11 10.98 7.04
    1 750 31.28 11.00 7.08
    2 000 31.39 11.02 7.12
    2 250 31.47 11.03 7.15
    2 500 31.53 11.04 7.18
    下载: 导出CSV
  • [1] 龙乐豪, 李平岐, 秦旭东, 等.我国航天运输系统60年发展回顾[J].宇航总体技术, 2018, 2(2):1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180804886219

    Long L H, Li P Q, Qin X D, et al. The review on China Space Transportation System of past 69 Years[J]. Astronautical Systems Engineering Technology, 2018, 2(2):1-6(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180804886219
    [2] 鲁宇.中国运载火箭技术发展[J].宇航总体技术, 2017, 1(3):1-8 http://d.old.wanfangdata.com.cn/Periodical/zght200310018

    Lu Y. Space launch vehicle's development in China[J]. Astronautical Systems Engineering Technology, 2017, 1(3):1-8(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zght200310018
    [3] Stone D E W, Clarke B. Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics[J]. Non-Destructive Testing, 1975, 8(3):137-145 doi: 10.1016/0029-1021(75)90023-7
    [4] Jeong H, Hsu D K. Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites[J]. Ultrasonics, 1995, 33(3):195-203 doi: 10.1016/0041-624X(95)00023-V
    [5] 胡宏伟, 李雄兵, 杨岳, 等.CFRP复杂型面构件的孔隙率超声检测方法[J].中南大学学报, 2012, 43(4):1315-1319 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201204019

    Hu H W, Li X B, Yang Y, et al. Method of inspecting porosity in CFRP with complex surface by ultrasonic[J]. Journal of Central South University, 2012, 43(4):1315-1319(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201204019
    [6] 林莉, 罗明, 郭广平, 等.碳纤维复合材料孔隙率超声声阻抗法检测[J].复合材料学报, 2009, 26(3):105-110 doi: 10.3321/j.issn:1000-3851.2009.03.019

    Lin L, Luo M, Guo G P, et al. Ultrasonic determination of carbon fiber composite porosity using acoustic impedance[J]. Acta Materiae Compositae Sinica, 2009, 26(3):105-110(in Chinese) doi: 10.3321/j.issn:1000-3851.2009.03.019
    [7] Kim K B, Hsu D K, Barnard D J. Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal[J]. NDT & E International, 2013, 56:10-16 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e747c5822511a037f0fbe0bf9ef7df2
    [8] Karabutov A A, Podymova N B. Nondestructive porosity assessment of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses[J]. Journal of Nondestructive Evaluation, 2013, 32(3):315-324 doi: 10.1007/s10921-013-0184-x
    [9] 陈越超, 周晓军, 杨辰龙, 等.厚截面复合材料局域孔隙超声检测方法[J].农业机械学报, 2015, 46(6):372-378 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201506053

    Chen Y C, Zhou X J, Yang C L, et al. Ultrasonic testing method for localized void defect identification in thick section composites[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6):372-378(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201506053
    [10] 陈越超, 杨辰龙, 周晓军, 等.厚截面CFRP孔隙超声脉冲反射检测方法[J].振动、测试与诊断, 2016, 36(3):425-431 http://d.old.wanfangdata.com.cn/Periodical/zdcsyzd201603003

    Chen Y C, Yang C L, Zhou X J, et al. Study of ultrasonic pulse echo method for voids test in thick-section CFRP[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(3):425-431(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdcsyzd201603003
    [11] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544 doi: 10.1109/TSP.2013.2288675
    [12] Yin A J, Ren H J. A propagating mode extraction algorithm for microwave waveguide using variational mode decomposition[J]. Measurement Science and Technology, 2015, 26(9):095009 doi: 10.1088/0957-0233/26/9/095009
    [13] Yan X A, Jia M P, Xiang L. Compound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrum[J]. Measurement Science and Technology, 2016, 27(7):075002 doi: 10.1088/0957-0233/27/7/075002
    [14] 李钊.碳纤维复合材料孔隙率超声检测与评价技术研究[D].杭州: 浙江大学, 2014

    Li Z. Research on ultrasonic detection and evaluation technique for porosity of carbon fiber composites[D]. Hangzhou: Zhejiang University, 2014(in Chinese)
    [15] 陈越超, 杨辰龙, 周晓军, 等.基于反射系数建模的层状CFRP超声共振特性研究[J].振动与冲击, 2016, 35(12):147-154, 165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201612023

    Chen Y C, Yang C L, Zhou X J, et al. Research of layered CFRP ultrasonic resonance characteristics based on reflection coefficient modelling[J]. Journal of Vibration and Shock, 2016, 35(12):147-154, 165(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201612023
    [16] 陈越超, 杨辰龙, 周晓军, 等.碳纤维复合材料超声脉冲反射信号频域建模[J].农业机械学报, 2014, 45(11):330-336 doi: 10.6041/j.issn.1000-1298.2014.11.051

    Chen Y C, Yang C L, Zhou X J, et al. Ultrasonic pulse-echo model for carbon fiber reinforced polymer in frequency domain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11):330-336(in Chinese) doi: 10.6041/j.issn.1000-1298.2014.11.051
    [17] Martin B G. Ultrasonic wave propagation in fiber-reinforced solids containing voids[J]. Journal of Applied Physics, 1977, 48(8):3368-3373 doi: 10.1063/1.324176
    [18] Demirli R, Saniie J. Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation[J]. Journal of the Franklin Institute, 2014, 351(2):907-921 doi: 10.1016/j.jfranklin.2013.09.028
    [19] Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transactions on Signal Processing, 2008, 56(1):85-95 doi: 10.1109/TSP.2007.906771
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  102
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-06
  • 刊出日期:  2019-11-05

目录

    /

    返回文章
    返回