留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形可展天线在轨热-结构分析

贠海亮 袁鹏飞

贠海亮, 袁鹏飞. 环形可展天线在轨热-结构分析[J]. 机械科学与技术, 2019, 38(10): 1612-1618. doi: 10.13433/j.cnki.1003-8728.20190013
引用本文: 贠海亮, 袁鹏飞. 环形可展天线在轨热-结构分析[J]. 机械科学与技术, 2019, 38(10): 1612-1618. doi: 10.13433/j.cnki.1003-8728.20190013
Yun Hailiang, Yuan Pengfei. Thermal-structural Analysis of Hoop Deployable Antenna in Real Orbital Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10): 1612-1618. doi: 10.13433/j.cnki.1003-8728.20190013
Citation: Yun Hailiang, Yuan Pengfei. Thermal-structural Analysis of Hoop Deployable Antenna in Real Orbital Environment[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10): 1612-1618. doi: 10.13433/j.cnki.1003-8728.20190013

环形可展天线在轨热-结构分析

doi: 10.13433/j.cnki.1003-8728.20190013
基金项目: 

国家自然科学基金项目 51775369

国家自然科学基金项目 51375330

国家自然科学基金项目 51721003

国家自然科学基金项目 U1537213

详细信息
    作者简介:

    贠海亮(1993-), 硕士研究生, 研究方向为空间可展天线热结构耦合分析, liangdiyi456@163.com

  • 中图分类号: V447

Thermal-structural Analysis of Hoop Deployable Antenna in Real Orbital Environment

  • 摘要: 作为卫星与地球信息通讯的重要部件,天线的性能指标将直接影响通信质量。以环形可展天线为对象,计及空间真实在轨环境,基于斯忒藩-玻尔兹曼热辐射、傅里叶热传导理论建立了相应分析模型,研究了其温度场分布情况;进而利用弹性力学及有限元理论,建立了天线热变形分析模型,研究了温度对天线形面精度和张力分布的影响规律。研究表明:在轨非均匀温度场会使环形可展天线形面精度呈现不同程度的恶化;在某些位置会使张力比明显增大,天线张力分布均匀性变差。
  • 图  1  环形天线结构模型

    图  2  设计误差示意图

    图  3  单元边界条件示意图

    图  4  轨道示意图

    图  5  春分温度场

    图  6  夏至温度场

    图  7  秋分温度场

    图  8  冬至温度场

    图  9  天线RMS曲线

    图  10  天线前网面张力比曲线

    图  11  天线纵向调节索张力比曲线

    图  12  天线后网面张力比曲线

    表  1  天线材料属性

    参数名称及单位 碳纤维 KEVLAR
    密度/(kg·m-3) 1 600 480
    弹性模量/Pa 1.75×1011 5.5×1010
    泊松比 0.3 0.3
    导热系数/(W·m-1·K-1) 400 168
    比热容/(J·kg-1·K-1) 800 136
    热膨胀系数/(K-1) 8×10-7 -2×10-6
    发射率 0.6 0.4
    太阳吸收率 0.81 0.63
    下载: 导出CSV
  • [1] Johnston J D, Thornton E A. Thermally induced attitude dynamics of a spacecraft with a flexible appendage[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(4):581-587 doi: 10.2514/2.4297
    [2] Sharnappa, Ganesan N, Sethuraman R. Thermally induced vibrations of piezo-thermo-viscoelastic composite beam with relaxation times and system response[J]. Multidiscipline Modeling in Materials and Structures, 2010, 6(1):120-140 doi: 10.1108/15736101011055293
    [3] Oguamanam D C D, Hansen J S, Heppler G R. Nonlinear transient response of thermally loaded laminated panels[J]. Journal of Applied Mechanics, 2004, 71(1):49-56 doi: 10.1115/1.1631033
    [4] 刘国青, 阮剑华, 罗文波, 等.航天器高稳定结构热变形分析与试验验证方法研究[J].航天器工程, 2014, 23(2):64-70 doi: 10.3969/j.issn.1673-8748.2014.02.011

    Liu G Q, Ruan J H, Luo W B, et al. Research on thermal deformation analysis and test verification method for spacecraft high-stability structure[J]. Spacecraft Engineering, 2014, 23(2):64-70(in Chinese) doi: 10.3969/j.issn.1673-8748.2014.02.011
    [5] Miyasaka A, Mitsugi J. Thermal distortion of over 10 meter diameter reflectors formed by truss structure[C]//Proceedings of the 32nd Thermophysics Conference. Atlanta: AIAA, 1997: 2457-2467
    [6] Thornton E A, Paul D B. Thermal-structural analysis of large space structures-an assessment of recent advance[J]. Journal of Spacecraft and Rockets, 1985, 22(4):385-393 doi: 10.2514/3.25761
    [7] Bigdeli B. A finite element thermal-structural analysis of the mast of the international space station[C]//Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Atlanta: AIAA, 2000: 1735-1746
    [8] Fang H F, Lou M, Huang J, et al. Thermal distortion analyses of a three-meter inflatable reflectarray antenna[C]//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk: AIAA, 2003: 1650-1660
    [9] Tizzi S. Numerical procedures for thermal problems of space antennae shells[J]. Acta Astronautica, 2004, 54(2):103-114 doi: 10.1016/S0094-5765(02)00285-0
    [10] Corpino S, Caldera M, Nichele F, et al. Thermal design and analysis of a nanosatellite in low earth orbit[J]. Acta Astronautica, 2015, 115:247-261 doi: 10.1016/j.actaastro.2015.05.012
    [11] Guo W, Li Y H, Li Y Z, et al. Thermal-structural analysis of large deployable space antenna under extreme heat loads[J]. Journal of Thermal Stresses, 2016, 39(8):887-905 doi: 10.1080/01495739.2016.1189776
    [12] Yang G G, Duan B Y, Du J L, et al. Shape pre-adjustment of deployable mesh antennas considering space thermal loads[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(1):143-155 doi: 10.1177/0954410016678432
    [13] 杨玉龙, 关富玲, 张淑杰.可展桁架天线温度场和热变形分析[J].空间科学学报, 2005, 25(3):235-240 doi: 10.3969/j.issn.0254-6124.2005.03.014

    Yang Y L, Guan F L, Zhang S J. Thermal-structural analysis of deployable truss antenna[J]. Chinese Journal of Space Science, 2005, 25(3):235-240(in Chinese) doi: 10.3969/j.issn.0254-6124.2005.03.014
    [14] 张惠峰, 关富玲, 侯国勇.可展桁架天线在轨运行中温度场分析[J].空间科学学报, 2008, 28(6):567-572 http://d.old.wanfangdata.com.cn/Periodical/kjkxxb200806009

    Zhang H F, Guan F L, Hou G Y. Thermal analysis of deployable truss antenna in orbit[J]. Chinese Journal of Space Science, 2008, 28(6):567-572(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kjkxxb200806009
    [15] 刘忠祥, 郑飞, 白院生.空间反射面天线在轨热分析[J].强度与环境, 2009, 36(5):56-63 doi: 10.3969/j.issn.1006-3919.2009.05.009

    Liu Z X, Zheng F, Bai Y S. Thermal analysis of spaceborne reflect surface antenna on orbit[J]. Structure & Environment Engineering, 2009, 36(5):56-63(in Chinese) doi: 10.3969/j.issn.1006-3919.2009.05.009
    [16] 张淑杰.空间可展桁架结构的设计与热分析[D].杭州: 浙江大学, 2001

    Zhang S J. Design and thermal analysis for deployable space truss structures[D]. Hangzhou: Zhejiang University, 2001(in Chinese)
    [17] 常文文, 艾力·玉苏甫, 许谦, 等.基于有限元方法的25m天线座架结构热特性分析[J].机械科学与技术, 2015, 34(5):812-816 doi: 10.13433/j.cnki.1003-8728.2015.0532

    Chang W W, Aili Y, Xu Q, et al. Thermal characteristics analysis of 25 m antenna mounts based on the finite element method[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5):812-816(in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0532
    [18] 周星驰, 周徐斌, 杜冬, 等.碳纤维复合材料天线反射面低变形优化设计[J].航天器工程, 2018, 27(1):83-88 doi: 10.3969/j.issn.1673-8748.2018.01.011

    Zhou X C, Zhou X B, Du D, et al. Low deformation optimized design of CFRP antenna reflector[J]. Spacecraft Engineering, 2018, 27(1):83-88(in Chinese) doi: 10.3969/j.issn.1673-8748.2018.01.011
    [19] 李辉, 杜建华, 王浩旭, 等.碳纤维织物结构对摩擦材料温度分布的影响[J].中国表面工程, 2017, 30(4):87-93 http://d.old.wanfangdata.com.cn/Periodical/zgbmgc201704013

    Li H, Du J H, Wang H X, et al. Effects of carbon fiber fabric structure on temperature distribution of friction materials[J]. China Surface Engineering, 2017, 30(4):87-93(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgbmgc201704013
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  279
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 刊出日期:  2019-10-05

目录

    /

    返回文章
    返回