留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的CEEMDAN故障诊断算法及在加工装备中的应用

张兰 王太勇 王鹏 乔卉卉

张兰, 王太勇, 王鹏, 乔卉卉. 改进的CEEMDAN故障诊断算法及在加工装备中的应用[J]. 机械科学与技术, 2019, 38(9): 1313-1318. doi: 10.13433/j.cnki.1003-8728.20190009
引用本文: 张兰, 王太勇, 王鹏, 乔卉卉. 改进的CEEMDAN故障诊断算法及在加工装备中的应用[J]. 机械科学与技术, 2019, 38(9): 1313-1318. doi: 10.13433/j.cnki.1003-8728.20190009
Zhang Lan, Wang Taiyong, Wang Peng, Qiao Huihui. An Improved CEEMDAN Fault Diagnosis Algorithm and its Application in Machining Equipment[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1313-1318. doi: 10.13433/j.cnki.1003-8728.20190009
Citation: Zhang Lan, Wang Taiyong, Wang Peng, Qiao Huihui. An Improved CEEMDAN Fault Diagnosis Algorithm and its Application in Machining Equipment[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1313-1318. doi: 10.13433/j.cnki.1003-8728.20190009

改进的CEEMDAN故障诊断算法及在加工装备中的应用

doi: 10.13433/j.cnki.1003-8728.20190009
基金项目: 

天津市科技计划项目 16PTGCCX00080

国家自然科学基金项目 51475324

国家自然科学基金项目 2017120024000417

中国北方工业集团公司基础创新项目 2017CX031

详细信息
    作者简介:

    张兰(1995-), 硕士研究生, 研究方向为数控技术、故障诊断, 1073029881@qq.com

    通讯作者:

    王太勇, 教授, 博士生导师, tywang@189.cn

  • 中图分类号: TH-39

An Improved CEEMDAN Fault Diagnosis Algorithm and its Application in Machining Equipment

  • 摘要: 轴承的故障诊断是保证设备安全运行的重要手段。故障诊断的关键是振动信号解调的方法。自适应噪声完备集合经验模态分解(CEEMDAN)是一种自适应信号处理方法,在非线性非平稳信号中有较好的解调性能。本文提出一种基于峭度准则改进的CEEMDAN故障诊断算法。具体步骤如下:首先,采用基于峭度准则改进的CEEMDAN方法提取有用的模态分量信号;之后,将筛选出来的模态信号叠加并通过Teager能量算子得到输出的能量信号;最后,对信号进行包络谱分析提取故障特征频率,从而实现故障诊断。通过仿真和加工装备部件的试验验证,改进的方法在实际应用中具有一定的实用价值。
  • 图  1  CEEMDAN算法流程图

    图  2  峭度曲线

    图  3  诊断算法流程图

    图  4  冲击信号的时域图像

    图  5  原始信号的时域和频域波形图

    图  6  CEEMDAN分解图

    图  7  IMF分量包络图

    图  8  振动信号时域波形和频谱

    图  9  原始振动信号分解图

    图  10  包络信号的时域信号和频谱图

    表  1  振动信号各类故障的特征频率

    缺陷形式 内圈单点缺陷 外圈单点缺陷 保持架缺陷 滚珠缺陷
    故障特征频率/Hz 166.07 109.93 12.21 72.27
    下载: 导出CSV

    表  2  各IMF分量峭度值

    IMF分量 峭度值
    IMF1 3.314 1
    IMF2 3.127 1
    IMF3 2.725 0
    IMF4 3.521 6
    IMF5 3.161 4
    IMF6 2.958 8
    IMF7 3.375 2
    IMF8 3.315 6
    IMF9 2.240 1
    IMF10 2.118 2
    IMF11 2.090 4
    IMF12 1.985 6
    IMF13 1.908 96
    IMF14 2.819 0
    下载: 导出CSV
  • [1] Wang W Y. Early detection of gear tooth cracking using the resonance demodulation technique[J]. Mechanical Systems and Signal Processing, 2001, 15(5):887-903 doi: 10.1006/mssp.2001.1416
    [2] Qin Y, Qin S R, Mao Y F. Research on iterated Hilbert transform and its application in mechanical fault diagnosis[J]. Mechanical Systems and Signal Processing, 2008, 22(8):1967-1980 doi: 10.1016/j.ymssp.2008.01.014
    [3] Cheng J S, Yu D J, Yang Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21(2):668-677 doi: 10.1016/j.ymssp.2005.10.005
    [4] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995 doi: 10.1098/rspa.1998.0193
    [5] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31:417-457 doi: 10.1146/annurev.fluid.31.1.417
    [6] Peng Z K, Tse P W, Chu F L. A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing, 2005, 19(5):974-988 doi: 10.1016/j.ymssp.2004.01.006
    [7] Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2003, 459(2037):2317-2345 doi: 10.1098/rspa.2003.1123
    [8] Dätig M, Schlurmann T. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves[J]. Ocean Engineering, 2004, 31(14-15):1783-1834 doi: 10.1016/j.oceaneng.2004.03.007
    [9] 李辉, 郑海起, 杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J].振动与冲击, 2008, 27(10):15-17, 22 doi: 10.3969/j.issn.1000-3835.2008.10.004

    Li H, Zheng H Q, Yang S P. Bearing fault diagnosis based on EMD and Teager Kaiser energy operator[J]. Journal of Vibration and Shock, 2008, 27(10):15-17, 22(in Chinese) doi: 10.3969/j.issn.1000-3835.2008.10.004
    [10] Kedadouche M, Thomas M, Tahan A. Monitoring machines by using a hybrid method combining MED, EMD, and TKEO[J]. Advances in Acoustics and Vibration, 2014, 2014:592080 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=753b222d9986f9be9395aca9f81d3458
    [11] Lu C Q, Wang S P, Tomovic M. Fault severity recognition of hydraulic piston pumps based on EMD and feature energy entropy[C]//Proceedings of the IEEE 10th Conference on Industrial Electronics and Applications. Auckland, New Zealand: IEEE, 2015: 489-494
    [12] Guo T, Deng Z M. An improved EMD method based on the multi-objective optimization and its application to fault feature extraction of rolling bearing[J]. Applied Acoustics, 2017, 127:46-62 doi: 10.1016/j.apacoust.2017.05.018
    [13] Singh D S, Zhao Q. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines[J]. Mechanical Systems and Signal Processing, 2016, 81:202-218 doi: 10.1016/j.ymssp.2016.03.007
    [14] Lv Y, Yuan R, Song G B. Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing[J]. Mechanical Systems and Signal Processing, 2016, 81:219-234 doi: 10.1016/j.ymssp.2016.03.010
    [15] Wu Z H, Huang N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41 http://d.old.wanfangdata.com.cn/Periodical/dianzixb201305033
    [16] Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic: IEEE, 2011: 4144-4147
    [17] Kaiser J F. On a simple algorithm to calculate the "energy" of a signal[C]//Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. Albuquerque, NM, USA: IEEE, 1990: 381-384
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  490
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 刊出日期:  2019-09-05

目录

    /

    返回文章
    返回